diff options
| author | Volpeon <git@volpeon.ink> | 2023-01-06 11:14:24 +0100 | 
|---|---|---|
| committer | Volpeon <git@volpeon.ink> | 2023-01-06 11:14:24 +0100 | 
| commit | 672a59abeaa60dc5ef78a33bd9b58e391b922016 (patch) | |
| tree | 1afb3a943af3fa7c935d133cf2768a33f11f8235 /train_ti.py | |
| parent | Package update (diff) | |
| download | textual-inversion-diff-672a59abeaa60dc5ef78a33bd9b58e391b922016.tar.gz textual-inversion-diff-672a59abeaa60dc5ef78a33bd9b58e391b922016.tar.bz2 textual-inversion-diff-672a59abeaa60dc5ef78a33bd9b58e391b922016.zip  | |
Use context manager for EMA, on_train/eval hooks
Diffstat (limited to 'train_ti.py')
| -rw-r--r-- | train_ti.py | 120 | 
1 files changed, 66 insertions, 54 deletions
diff --git a/train_ti.py b/train_ti.py index aa2bf02..f622299 100644 --- a/train_ti.py +++ b/train_ti.py  | |||
| @@ -2,10 +2,9 @@ import argparse | |||
| 2 | import math | 2 | import math | 
| 3 | import datetime | 3 | import datetime | 
| 4 | import logging | 4 | import logging | 
| 5 | import copy | ||
| 6 | from pathlib import Path | ||
| 7 | from functools import partial | 5 | from functools import partial | 
| 8 | from contextlib import nullcontext | 6 | from pathlib import Path | 
| 7 | from contextlib import contextmanager, nullcontext | ||
| 9 | 8 | ||
| 10 | import torch | 9 | import torch | 
| 11 | import torch.utils.checkpoint | 10 | import torch.utils.checkpoint | 
| @@ -849,11 +848,24 @@ def main(): | |||
| 849 | num_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | 848 | num_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | 
| 850 | val_steps = num_val_steps_per_epoch * num_epochs | 849 | val_steps = num_val_steps_per_epoch * num_epochs | 
| 851 | 850 | ||
| 851 | @contextmanager | ||
| 852 | def on_train(): | 852 | def on_train(): | 
| 853 | tokenizer.train() | 853 | try: | 
| 854 | tokenizer.train() | ||
| 855 | yield | ||
| 856 | finally: | ||
| 857 | tokenizer.eval() | ||
| 854 | 858 | ||
| 859 | @contextmanager | ||
| 855 | def on_eval(): | 860 | def on_eval(): | 
| 856 | tokenizer.eval() | 861 | try: | 
| 862 | ema_context = ema_embeddings.apply_temporary( | ||
| 863 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) if args.use_ema is not None and eval else nullcontext() | ||
| 864 | |||
| 865 | with ema_context: | ||
| 866 | yield | ||
| 867 | finally: | ||
| 868 | pass | ||
| 857 | 869 | ||
| 858 | loop = partial( | 870 | loop = partial( | 
| 859 | run_model, | 871 | run_model, | 
| @@ -961,80 +973,80 @@ def main(): | |||
| 961 | local_progress_bar.reset() | 973 | local_progress_bar.reset() | 
| 962 | 974 | ||
| 963 | text_encoder.train() | 975 | text_encoder.train() | 
| 964 | on_train() | ||
| 965 | 976 | ||
| 966 | for step, batch in enumerate(train_dataloader): | 977 | with on_train(): | 
| 967 | with accelerator.accumulate(text_encoder): | 978 | for step, batch in enumerate(train_dataloader): | 
| 968 | loss, acc, bsz = loop(step, batch) | 979 | with accelerator.accumulate(text_encoder): | 
| 980 | loss, acc, bsz = loop(step, batch) | ||
| 969 | 981 | ||
| 970 | accelerator.backward(loss) | 982 | accelerator.backward(loss) | 
| 971 | 983 | ||
| 972 | optimizer.step() | 984 | optimizer.step() | 
| 973 | if not accelerator.optimizer_step_was_skipped: | 985 | if not accelerator.optimizer_step_was_skipped: | 
| 974 | lr_scheduler.step() | 986 | lr_scheduler.step() | 
| 975 | optimizer.zero_grad(set_to_none=True) | 987 | optimizer.zero_grad(set_to_none=True) | 
| 976 | 988 | ||
| 977 | avg_loss.update(loss.detach_(), bsz) | 989 | avg_loss.update(loss.detach_(), bsz) | 
| 978 | avg_acc.update(acc.detach_(), bsz) | 990 | avg_acc.update(acc.detach_(), bsz) | 
| 979 | 991 | ||
| 980 | # Checks if the accelerator has performed an optimization step behind the scenes | 992 | # Checks if the accelerator has performed an optimization step behind the scenes | 
| 981 | if accelerator.sync_gradients: | 993 | if accelerator.sync_gradients: | 
| 982 | if args.use_ema: | 994 | if args.use_ema: | 
| 983 | ema_embeddings.step(text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | 995 | ema_embeddings.step(text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | 
| 984 | 996 | ||
| 985 | local_progress_bar.update(1) | 997 | local_progress_bar.update(1) | 
| 986 | global_progress_bar.update(1) | 998 | global_progress_bar.update(1) | 
| 987 | 999 | ||
| 988 | global_step += 1 | 1000 | global_step += 1 | 
| 989 | 1001 | ||
| 990 | logs = { | 1002 | logs = { | 
| 991 | "train/loss": avg_loss.avg.item(), | 1003 | "train/loss": avg_loss.avg.item(), | 
| 992 | "train/acc": avg_acc.avg.item(), | 1004 | "train/acc": avg_acc.avg.item(), | 
| 993 | "train/cur_loss": loss.item(), | 1005 | "train/cur_loss": loss.item(), | 
| 994 | "train/cur_acc": acc.item(), | 1006 | "train/cur_acc": acc.item(), | 
| 995 | "lr": lr_scheduler.get_last_lr()[0], | 1007 | "lr": lr_scheduler.get_last_lr()[0], | 
| 996 | } | 1008 | } | 
| 997 | if args.use_ema: | 1009 | if args.use_ema: | 
| 998 | logs["ema_decay"] = ema_embeddings.decay | 1010 | logs["ema_decay"] = ema_embeddings.decay | 
| 999 | 1011 | ||
| 1000 | accelerator.log(logs, step=global_step) | 1012 | accelerator.log(logs, step=global_step) | 
| 1001 | 1013 | ||
| 1002 | local_progress_bar.set_postfix(**logs) | 1014 | local_progress_bar.set_postfix(**logs) | 
| 1003 | 1015 | ||
| 1004 | if global_step >= args.max_train_steps: | 1016 | if global_step >= args.max_train_steps: | 
| 1005 | break | 1017 | break | 
| 1006 | 1018 | ||
| 1007 | accelerator.wait_for_everyone() | 1019 | accelerator.wait_for_everyone() | 
| 1008 | 1020 | ||
| 1009 | text_encoder.eval() | 1021 | text_encoder.eval() | 
| 1010 | on_eval() | ||
| 1011 | 1022 | ||
| 1012 | cur_loss_val = AverageMeter() | 1023 | cur_loss_val = AverageMeter() | 
| 1013 | cur_acc_val = AverageMeter() | 1024 | cur_acc_val = AverageMeter() | 
| 1014 | 1025 | ||
| 1015 | with torch.inference_mode(): | 1026 | with torch.inference_mode(): | 
| 1016 | for step, batch in enumerate(val_dataloader): | 1027 | with on_eval(): | 
| 1017 | loss, acc, bsz = loop(step, batch, True) | 1028 | for step, batch in enumerate(val_dataloader): | 
| 1029 | loss, acc, bsz = loop(step, batch, True) | ||
| 1018 | 1030 | ||
| 1019 | loss = loss.detach_() | 1031 | loss = loss.detach_() | 
| 1020 | acc = acc.detach_() | 1032 | acc = acc.detach_() | 
| 1021 | 1033 | ||
| 1022 | cur_loss_val.update(loss, bsz) | 1034 | cur_loss_val.update(loss, bsz) | 
| 1023 | cur_acc_val.update(acc, bsz) | 1035 | cur_acc_val.update(acc, bsz) | 
| 1024 | 1036 | ||
| 1025 | avg_loss_val.update(loss, bsz) | 1037 | avg_loss_val.update(loss, bsz) | 
| 1026 | avg_acc_val.update(acc, bsz) | 1038 | avg_acc_val.update(acc, bsz) | 
| 1027 | 1039 | ||
| 1028 | local_progress_bar.update(1) | 1040 | local_progress_bar.update(1) | 
| 1029 | global_progress_bar.update(1) | 1041 | global_progress_bar.update(1) | 
| 1030 | 1042 | ||
| 1031 | logs = { | 1043 | logs = { | 
| 1032 | "val/loss": avg_loss_val.avg.item(), | 1044 | "val/loss": avg_loss_val.avg.item(), | 
| 1033 | "val/acc": avg_acc_val.avg.item(), | 1045 | "val/acc": avg_acc_val.avg.item(), | 
| 1034 | "val/cur_loss": loss.item(), | 1046 | "val/cur_loss": loss.item(), | 
| 1035 | "val/cur_acc": acc.item(), | 1047 | "val/cur_acc": acc.item(), | 
| 1036 | } | 1048 | } | 
| 1037 | local_progress_bar.set_postfix(**logs) | 1049 | local_progress_bar.set_postfix(**logs) | 
| 1038 | 1050 | ||
| 1039 | logs["val/cur_loss"] = cur_loss_val.avg.item() | 1051 | logs["val/cur_loss"] = cur_loss_val.avg.item() | 
| 1040 | logs["val/cur_acc"] = cur_acc_val.avg.item() | 1052 | logs["val/cur_acc"] = cur_acc_val.avg.item() | 
