diff options
| author | Volpeon <git@volpeon.ink> | 2023-01-13 13:49:35 +0100 | 
|---|---|---|
| committer | Volpeon <git@volpeon.ink> | 2023-01-13 13:49:35 +0100 | 
| commit | 7b149930bb53b93db74106ad20a30abf4b114f9b (patch) | |
| tree | 67c2ccbce2a9838ad8a020ee527b19113e67e30a /train_ti.py | |
| parent | Added TI decay start offset (diff) | |
| download | textual-inversion-diff-7b149930bb53b93db74106ad20a30abf4b114f9b.tar.gz textual-inversion-diff-7b149930bb53b93db74106ad20a30abf4b114f9b.tar.bz2 textual-inversion-diff-7b149930bb53b93db74106ad20a30abf4b114f9b.zip | |
Removed PromptProcessor, modularized training loop
Diffstat (limited to 'train_ti.py')
| -rw-r--r-- | train_ti.py | 268 | 
1 files changed, 53 insertions, 215 deletions
| diff --git a/train_ti.py b/train_ti.py index e18ee38..8c86586 100644 --- a/train_ti.py +++ b/train_ti.py | |||
| @@ -21,11 +21,10 @@ from slugify import slugify | |||
| 21 | from util import load_config, load_embeddings_from_dir | 21 | from util import load_config, load_embeddings_from_dir | 
| 22 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | 22 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | 
| 23 | from data.csv import VlpnDataModule, VlpnDataItem | 23 | from data.csv import VlpnDataModule, VlpnDataItem | 
| 24 | from training.common import loss_step, generate_class_images, get_scheduler | 24 | from training.common import loss_step, train_loop, generate_class_images, get_scheduler | 
| 25 | from training.lr import LRFinder | 25 | from training.lr import LRFinder | 
| 26 | from training.util import AverageMeter, CheckpointerBase, EMAModel, save_args | 26 | from training.util import AverageMeter, CheckpointerBase, EMAModel, save_args | 
| 27 | from models.clip.embeddings import patch_managed_embeddings | 27 | from models.clip.embeddings import patch_managed_embeddings | 
| 28 | from models.clip.prompt import PromptProcessor | ||
| 29 | from models.clip.tokenizer import MultiCLIPTokenizer | 28 | from models.clip.tokenizer import MultiCLIPTokenizer | 
| 30 | 29 | ||
| 31 | logger = get_logger(__name__) | 30 | logger = get_logger(__name__) | 
| @@ -198,12 +197,6 @@ def parse_args(): | |||
| 198 | default=100 | 197 | default=100 | 
| 199 | ) | 198 | ) | 
| 200 | parser.add_argument( | 199 | parser.add_argument( | 
| 201 | "--max_train_steps", | ||
| 202 | type=int, | ||
| 203 | default=None, | ||
| 204 | help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | ||
| 205 | ) | ||
| 206 | parser.add_argument( | ||
| 207 | "--gradient_accumulation_steps", | 200 | "--gradient_accumulation_steps", | 
| 208 | type=int, | 201 | type=int, | 
| 209 | default=1, | 202 | default=1, | 
| @@ -409,7 +402,7 @@ def parse_args(): | |||
| 409 | ) | 402 | ) | 
| 410 | parser.add_argument( | 403 | parser.add_argument( | 
| 411 | "--decay_target", | 404 | "--decay_target", | 
| 412 | default=0.4, | 405 | default=None, | 
| 413 | type=float, | 406 | type=float, | 
| 414 | help="Embedding decay target." | 407 | help="Embedding decay target." | 
| 415 | ) | 408 | ) | 
| @@ -668,8 +661,6 @@ def main(): | |||
| 668 | text_encoder.text_model.embeddings.position_embedding.requires_grad_(False) | 661 | text_encoder.text_model.embeddings.position_embedding.requires_grad_(False) | 
| 669 | text_encoder.text_model.embeddings.token_embedding.requires_grad_(False) | 662 | text_encoder.text_model.embeddings.token_embedding.requires_grad_(False) | 
| 670 | 663 | ||
| 671 | prompt_processor = PromptProcessor(tokenizer, text_encoder) | ||
| 672 | |||
| 673 | if args.scale_lr: | 664 | if args.scale_lr: | 
| 674 | args.learning_rate = ( | 665 | args.learning_rate = ( | 
| 675 | args.learning_rate * args.gradient_accumulation_steps * | 666 | args.learning_rate * args.gradient_accumulation_steps * | 
| @@ -722,7 +713,7 @@ def main(): | |||
| 722 | datamodule = VlpnDataModule( | 713 | datamodule = VlpnDataModule( | 
| 723 | data_file=args.train_data_file, | 714 | data_file=args.train_data_file, | 
| 724 | batch_size=args.train_batch_size, | 715 | batch_size=args.train_batch_size, | 
| 725 | prompt_processor=prompt_processor, | 716 | tokenizer=tokenizer, | 
| 726 | class_subdir=args.class_image_dir, | 717 | class_subdir=args.class_image_dir, | 
| 727 | num_class_images=args.num_class_images, | 718 | num_class_images=args.num_class_images, | 
| 728 | size=args.resolution, | 719 | size=args.resolution, | 
| @@ -759,13 +750,7 @@ def main(): | |||
| 759 | args.sample_steps | 750 | args.sample_steps | 
| 760 | ) | 751 | ) | 
| 761 | 752 | ||
| 762 | # Scheduler and math around the number of training steps. | ||
| 763 | overrode_max_train_steps = False | ||
| 764 | num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | 753 | num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | 
| 765 | if args.max_train_steps is None: | ||
| 766 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | ||
| 767 | overrode_max_train_steps = True | ||
| 768 | num_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | ||
| 769 | 754 | ||
| 770 | if args.find_lr: | 755 | if args.find_lr: | 
| 771 | lr_scheduler = None | 756 | lr_scheduler = None | 
| @@ -781,7 +766,7 @@ def main(): | |||
| 781 | annealing_exp=args.lr_annealing_exp, | 766 | annealing_exp=args.lr_annealing_exp, | 
| 782 | cycles=args.lr_cycles, | 767 | cycles=args.lr_cycles, | 
| 783 | warmup_epochs=args.lr_warmup_epochs, | 768 | warmup_epochs=args.lr_warmup_epochs, | 
| 784 | max_train_steps=args.max_train_steps, | 769 | num_train_epochs=args.num_train_epochs, | 
| 785 | num_update_steps_per_epoch=num_update_steps_per_epoch, | 770 | num_update_steps_per_epoch=num_update_steps_per_epoch, | 
| 786 | gradient_accumulation_steps=args.gradient_accumulation_steps | 771 | gradient_accumulation_steps=args.gradient_accumulation_steps | 
| 787 | ) | 772 | ) | 
| @@ -805,15 +790,6 @@ def main(): | |||
| 805 | else: | 790 | else: | 
| 806 | unet.eval() | 791 | unet.eval() | 
| 807 | 792 | ||
| 808 | # We need to recalculate our total training steps as the size of the training dataloader may have changed. | ||
| 809 | num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | ||
| 810 | if overrode_max_train_steps: | ||
| 811 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | ||
| 812 | |||
| 813 | num_val_steps_per_epoch = len(val_dataloader) | ||
| 814 | num_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | ||
| 815 | val_steps = num_val_steps_per_epoch * num_epochs | ||
| 816 | |||
| 817 | @contextmanager | 793 | @contextmanager | 
| 818 | def on_train(): | 794 | def on_train(): | 
| 819 | try: | 795 | try: | 
| @@ -842,19 +818,44 @@ def main(): | |||
| 842 | min(1.0, max(0.0, args.decay_factor * ((lr - args.decay_start) / (args.learning_rate - args.decay_start)))) | 818 | min(1.0, max(0.0, args.decay_factor * ((lr - args.decay_start) / (args.learning_rate - args.decay_start)))) | 
| 843 | ) | 819 | ) | 
| 844 | 820 | ||
| 821 | if args.use_ema: | ||
| 822 | ema_embeddings.step(text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
| 823 | |||
| 824 | def on_log(): | ||
| 825 | if args.use_ema: | ||
| 826 | return {"ema_decay": ema_embeddings.decay} | ||
| 827 | return {} | ||
| 828 | |||
| 845 | loop = partial( | 829 | loop = partial( | 
| 846 | loss_step, | 830 | loss_step, | 
| 847 | vae, | 831 | vae, | 
| 848 | noise_scheduler, | 832 | noise_scheduler, | 
| 849 | unet, | 833 | unet, | 
| 850 | prompt_processor, | 834 | text_encoder, | 
| 851 | args.num_class_images, | 835 | args.num_class_images, | 
| 852 | args.prior_loss_weight, | 836 | args.prior_loss_weight, | 
| 853 | args.seed, | 837 | args.seed, | 
| 854 | ) | 838 | ) | 
| 855 | 839 | ||
| 856 | # We need to initialize the trackers we use, and also store our configuration. | 840 | checkpointer = Checkpointer( | 
| 857 | # The trackers initializes automatically on the main process. | 841 | weight_dtype=weight_dtype, | 
| 842 | datamodule=datamodule, | ||
| 843 | accelerator=accelerator, | ||
| 844 | vae=vae, | ||
| 845 | unet=unet, | ||
| 846 | tokenizer=tokenizer, | ||
| 847 | text_encoder=text_encoder, | ||
| 848 | ema_embeddings=ema_embeddings, | ||
| 849 | scheduler=checkpoint_scheduler, | ||
| 850 | placeholder_token=args.placeholder_token, | ||
| 851 | new_ids=new_ids, | ||
| 852 | output_dir=basepath, | ||
| 853 | sample_image_size=args.sample_image_size, | ||
| 854 | sample_batch_size=args.sample_batch_size, | ||
| 855 | sample_batches=args.sample_batches, | ||
| 856 | seed=args.seed | ||
| 857 | ) | ||
| 858 | |||
| 858 | if accelerator.is_main_process: | 859 | if accelerator.is_main_process: | 
| 859 | config = vars(args).copy() | 860 | config = vars(args).copy() | 
| 860 | config["initializer_token"] = " ".join(config["initializer_token"]) | 861 | config["initializer_token"] = " ".join(config["initializer_token"]) | 
| @@ -882,190 +883,27 @@ def main(): | |||
| 882 | 883 | ||
| 883 | plt.savefig(basepath.joinpath("lr.png"), dpi=300) | 884 | plt.savefig(basepath.joinpath("lr.png"), dpi=300) | 
| 884 | plt.close() | 885 | plt.close() | 
| 885 | 886 | else: | |
| 886 | quit() | 887 | train_loop( | 
| 887 | 888 | accelerator=accelerator, | |
| 888 | # Train! | 889 | optimizer=optimizer, | 
| 889 | total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | 890 | lr_scheduler=lr_scheduler, | 
| 890 | 891 | model=text_encoder, | |
| 891 | logger.info("***** Running training *****") | 892 | checkpointer=checkpointer, | 
| 892 | logger.info(f" Num Epochs = {num_epochs}") | 893 | train_dataloader=train_dataloader, | 
| 893 | logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | 894 | val_dataloader=val_dataloader, | 
| 894 | logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | 895 | loss_step=loop, | 
| 895 | logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | 896 | sample_frequency=args.sample_frequency, | 
| 896 | logger.info(f" Total optimization steps = {args.max_train_steps}") | 897 | sample_steps=args.sample_steps, | 
| 897 | # Only show the progress bar once on each machine. | 898 | checkpoint_frequency=args.checkpoint_frequency, | 
| 898 | 899 | global_step_offset=global_step_offset, | |
| 899 | global_step = 0 | 900 | gradient_accumulation_steps=args.gradient_accumulation_steps, | 
| 900 | 901 | num_epochs=args.num_train_epochs, | |
| 901 | avg_loss = AverageMeter() | 902 | on_log=on_log, | 
| 902 | avg_acc = AverageMeter() | 903 | on_train=on_train, | 
| 903 | 904 | on_after_optimize=on_after_optimize, | |
| 904 | avg_loss_val = AverageMeter() | 905 | on_eval=on_eval | 
| 905 | avg_acc_val = AverageMeter() | 906 | ) | 
| 906 | |||
| 907 | max_acc_val = 0.0 | ||
| 908 | |||
| 909 | checkpointer = Checkpointer( | ||
| 910 | weight_dtype=weight_dtype, | ||
| 911 | datamodule=datamodule, | ||
| 912 | accelerator=accelerator, | ||
| 913 | vae=vae, | ||
| 914 | unet=unet, | ||
| 915 | tokenizer=tokenizer, | ||
| 916 | text_encoder=text_encoder, | ||
| 917 | ema_embeddings=ema_embeddings, | ||
| 918 | scheduler=checkpoint_scheduler, | ||
| 919 | placeholder_token=args.placeholder_token, | ||
| 920 | new_ids=new_ids, | ||
| 921 | output_dir=basepath, | ||
| 922 | sample_image_size=args.sample_image_size, | ||
| 923 | sample_batch_size=args.sample_batch_size, | ||
| 924 | sample_batches=args.sample_batches, | ||
| 925 | seed=args.seed | ||
| 926 | ) | ||
| 927 | |||
| 928 | local_progress_bar = tqdm( | ||
| 929 | range(num_update_steps_per_epoch + num_val_steps_per_epoch), | ||
| 930 | disable=not accelerator.is_local_main_process, | ||
| 931 | dynamic_ncols=True | ||
| 932 | ) | ||
| 933 | local_progress_bar.set_description(f"Epoch 1 / {num_epochs}") | ||
| 934 | |||
| 935 | global_progress_bar = tqdm( | ||
| 936 | range(args.max_train_steps + val_steps), | ||
| 937 | disable=not accelerator.is_local_main_process, | ||
| 938 | dynamic_ncols=True | ||
| 939 | ) | ||
| 940 | global_progress_bar.set_description("Total progress") | ||
| 941 | |||
| 942 | try: | ||
| 943 | for epoch in range(num_epochs): | ||
| 944 | if accelerator.is_main_process: | ||
| 945 | if epoch % args.sample_frequency == 0: | ||
| 946 | checkpointer.save_samples(global_step + global_step_offset, args.sample_steps) | ||
| 947 | |||
| 948 | local_progress_bar.set_description(f"Epoch {epoch + 1} / {num_epochs}") | ||
| 949 | local_progress_bar.reset() | ||
| 950 | |||
| 951 | text_encoder.train() | ||
| 952 | |||
| 953 | with on_train(): | ||
| 954 | for step, batch in enumerate(train_dataloader): | ||
| 955 | with accelerator.accumulate(text_encoder): | ||
| 956 | loss, acc, bsz = loop(step, batch) | ||
| 957 | |||
| 958 | accelerator.backward(loss) | ||
| 959 | |||
| 960 | optimizer.step() | ||
| 961 | lr_scheduler.step() | ||
| 962 | optimizer.zero_grad(set_to_none=True) | ||
| 963 | |||
| 964 | avg_loss.update(loss.detach_(), bsz) | ||
| 965 | avg_acc.update(acc.detach_(), bsz) | ||
| 966 | |||
| 967 | # Checks if the accelerator has performed an optimization step behind the scenes | ||
| 968 | if accelerator.sync_gradients: | ||
| 969 | on_after_optimize(lr_scheduler.get_last_lr()[0]) | ||
| 970 | |||
| 971 | if args.use_ema: | ||
| 972 | ema_embeddings.step( | ||
| 973 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
| 974 | |||
| 975 | local_progress_bar.update(1) | ||
| 976 | global_progress_bar.update(1) | ||
| 977 | |||
| 978 | global_step += 1 | ||
| 979 | |||
| 980 | logs = { | ||
| 981 | "train/loss": avg_loss.avg.item(), | ||
| 982 | "train/acc": avg_acc.avg.item(), | ||
| 983 | "train/cur_loss": loss.item(), | ||
| 984 | "train/cur_acc": acc.item(), | ||
| 985 | "lr": lr_scheduler.get_last_lr()[0], | ||
| 986 | } | ||
| 987 | if args.use_ema: | ||
| 988 | logs["ema_decay"] = ema_embeddings.decay | ||
| 989 | |||
| 990 | accelerator.log(logs, step=global_step) | ||
| 991 | |||
| 992 | local_progress_bar.set_postfix(**logs) | ||
| 993 | |||
| 994 | if global_step >= args.max_train_steps: | ||
| 995 | break | ||
| 996 | |||
| 997 | accelerator.wait_for_everyone() | ||
| 998 | |||
| 999 | text_encoder.eval() | ||
| 1000 | |||
| 1001 | cur_loss_val = AverageMeter() | ||
| 1002 | cur_acc_val = AverageMeter() | ||
| 1003 | |||
| 1004 | with torch.inference_mode(): | ||
| 1005 | with on_eval(): | ||
| 1006 | for step, batch in enumerate(val_dataloader): | ||
| 1007 | loss, acc, bsz = loop(step, batch, True) | ||
| 1008 | |||
| 1009 | loss = loss.detach_() | ||
| 1010 | acc = acc.detach_() | ||
| 1011 | |||
| 1012 | cur_loss_val.update(loss, bsz) | ||
| 1013 | cur_acc_val.update(acc, bsz) | ||
| 1014 | |||
| 1015 | avg_loss_val.update(loss, bsz) | ||
| 1016 | avg_acc_val.update(acc, bsz) | ||
| 1017 | |||
| 1018 | local_progress_bar.update(1) | ||
| 1019 | global_progress_bar.update(1) | ||
| 1020 | |||
| 1021 | logs = { | ||
| 1022 | "val/loss": avg_loss_val.avg.item(), | ||
| 1023 | "val/acc": avg_acc_val.avg.item(), | ||
| 1024 | "val/cur_loss": loss.item(), | ||
| 1025 | "val/cur_acc": acc.item(), | ||
| 1026 | } | ||
| 1027 | local_progress_bar.set_postfix(**logs) | ||
| 1028 | |||
| 1029 | logs["val/cur_loss"] = cur_loss_val.avg.item() | ||
| 1030 | logs["val/cur_acc"] = cur_acc_val.avg.item() | ||
| 1031 | |||
| 1032 | accelerator.log(logs, step=global_step) | ||
| 1033 | |||
| 1034 | local_progress_bar.clear() | ||
| 1035 | global_progress_bar.clear() | ||
| 1036 | |||
| 1037 | if accelerator.is_main_process: | ||
| 1038 | if avg_acc_val.avg.item() > max_acc_val: | ||
| 1039 | accelerator.print( | ||
| 1040 | f"Global step {global_step}: Validation accuracy reached new maximum: {max_acc_val:.2e} -> {avg_acc_val.avg.item():.2e}") | ||
| 1041 | checkpointer.checkpoint(global_step + global_step_offset, "milestone") | ||
| 1042 | max_acc_val = avg_acc_val.avg.item() | ||
| 1043 | |||
| 1044 | if (epoch + 1) % args.checkpoint_frequency == 0: | ||
| 1045 | checkpointer.checkpoint(global_step + global_step_offset, "training") | ||
| 1046 | save_args(basepath, args, { | ||
| 1047 | "global_step": global_step + global_step_offset | ||
| 1048 | }) | ||
| 1049 | |||
| 1050 | # Create the pipeline using using the trained modules and save it. | ||
| 1051 | if accelerator.is_main_process: | ||
| 1052 | print("Finished! Saving final checkpoint and resume state.") | ||
| 1053 | checkpointer.checkpoint(global_step + global_step_offset, "end") | ||
| 1054 | checkpointer.save_samples(global_step + global_step_offset, args.sample_steps) | ||
| 1055 | save_args(basepath, args, { | ||
| 1056 | "global_step": global_step + global_step_offset | ||
| 1057 | }) | ||
| 1058 | accelerator.end_training() | ||
| 1059 | |||
| 1060 | except KeyboardInterrupt: | ||
| 1061 | if accelerator.is_main_process: | ||
| 1062 | print("Interrupted, saving checkpoint and resume state...") | ||
| 1063 | checkpointer.checkpoint(global_step + global_step_offset, "end") | ||
| 1064 | save_args(basepath, args, { | ||
| 1065 | "global_step": global_step + global_step_offset | ||
| 1066 | }) | ||
| 1067 | accelerator.end_training() | ||
| 1068 | quit() | ||
| 1069 | 907 | ||
| 1070 | 908 | ||
| 1071 | if __name__ == "__main__": | 909 | if __name__ == "__main__": | 
