diff options
| author | Volpeon <git@volpeon.ink> | 2023-02-07 20:44:43 +0100 |
|---|---|---|
| committer | Volpeon <git@volpeon.ink> | 2023-02-07 20:44:43 +0100 |
| commit | 7ccd4614a56cfd6ecacba85605f338593f1059f0 (patch) | |
| tree | fa9882b256c752705bc42229bac4e00ed7088643 /training/strategy/lora.py | |
| parent | Restored LR finder (diff) | |
| download | textual-inversion-diff-7ccd4614a56cfd6ecacba85605f338593f1059f0.tar.gz textual-inversion-diff-7ccd4614a56cfd6ecacba85605f338593f1059f0.tar.bz2 textual-inversion-diff-7ccd4614a56cfd6ecacba85605f338593f1059f0.zip | |
Add Lora
Diffstat (limited to 'training/strategy/lora.py')
| -rw-r--r-- | training/strategy/lora.py | 147 |
1 files changed, 147 insertions, 0 deletions
diff --git a/training/strategy/lora.py b/training/strategy/lora.py new file mode 100644 index 0000000..88d1824 --- /dev/null +++ b/training/strategy/lora.py | |||
| @@ -0,0 +1,147 @@ | |||
| 1 | from contextlib import nullcontext | ||
| 2 | from typing import Optional | ||
| 3 | from functools import partial | ||
| 4 | from contextlib import contextmanager, nullcontext | ||
| 5 | from pathlib import Path | ||
| 6 | |||
| 7 | import torch | ||
| 8 | import torch.nn as nn | ||
| 9 | from torch.utils.data import DataLoader | ||
| 10 | |||
| 11 | from accelerate import Accelerator | ||
| 12 | from transformers import CLIPTextModel | ||
| 13 | from diffusers import AutoencoderKL, UNet2DConditionModel, DPMSolverMultistepScheduler | ||
| 14 | from diffusers.loaders import AttnProcsLayers | ||
| 15 | |||
| 16 | from slugify import slugify | ||
| 17 | |||
| 18 | from models.clip.tokenizer import MultiCLIPTokenizer | ||
| 19 | from training.util import EMAModel | ||
| 20 | from training.functional import TrainingStrategy, TrainingCallbacks, save_samples | ||
| 21 | |||
| 22 | |||
| 23 | def lora_strategy_callbacks( | ||
| 24 | accelerator: Accelerator, | ||
| 25 | unet: UNet2DConditionModel, | ||
| 26 | text_encoder: CLIPTextModel, | ||
| 27 | tokenizer: MultiCLIPTokenizer, | ||
| 28 | vae: AutoencoderKL, | ||
| 29 | sample_scheduler: DPMSolverMultistepScheduler, | ||
| 30 | train_dataloader: DataLoader, | ||
| 31 | val_dataloader: Optional[DataLoader], | ||
| 32 | sample_output_dir: Path, | ||
| 33 | checkpoint_output_dir: Path, | ||
| 34 | seed: int, | ||
| 35 | lora_layers: AttnProcsLayers, | ||
| 36 | max_grad_norm: float = 1.0, | ||
| 37 | sample_batch_size: int = 1, | ||
| 38 | sample_num_batches: int = 1, | ||
| 39 | sample_num_steps: int = 20, | ||
| 40 | sample_guidance_scale: float = 7.5, | ||
| 41 | sample_image_size: Optional[int] = None, | ||
| 42 | ): | ||
| 43 | sample_output_dir.mkdir(parents=True, exist_ok=True) | ||
| 44 | checkpoint_output_dir.mkdir(parents=True, exist_ok=True) | ||
| 45 | |||
| 46 | weight_dtype = torch.float32 | ||
| 47 | if accelerator.state.mixed_precision == "fp16": | ||
| 48 | weight_dtype = torch.float16 | ||
| 49 | elif accelerator.state.mixed_precision == "bf16": | ||
| 50 | weight_dtype = torch.bfloat16 | ||
| 51 | |||
| 52 | save_samples_ = partial( | ||
| 53 | save_samples, | ||
| 54 | accelerator=accelerator, | ||
| 55 | unet=unet, | ||
| 56 | text_encoder=text_encoder, | ||
| 57 | tokenizer=tokenizer, | ||
| 58 | vae=vae, | ||
| 59 | sample_scheduler=sample_scheduler, | ||
| 60 | train_dataloader=train_dataloader, | ||
| 61 | val_dataloader=val_dataloader, | ||
| 62 | output_dir=sample_output_dir, | ||
| 63 | seed=seed, | ||
| 64 | batch_size=sample_batch_size, | ||
| 65 | num_batches=sample_num_batches, | ||
| 66 | num_steps=sample_num_steps, | ||
| 67 | guidance_scale=sample_guidance_scale, | ||
| 68 | image_size=sample_image_size, | ||
| 69 | ) | ||
| 70 | |||
| 71 | def on_prepare(): | ||
| 72 | lora_layers.requires_grad_(True) | ||
| 73 | |||
| 74 | def on_accum_model(): | ||
| 75 | return unet | ||
| 76 | |||
| 77 | @contextmanager | ||
| 78 | def on_train(epoch: int): | ||
| 79 | tokenizer.train() | ||
| 80 | yield | ||
| 81 | |||
| 82 | @contextmanager | ||
| 83 | def on_eval(): | ||
| 84 | tokenizer.eval() | ||
| 85 | yield | ||
| 86 | |||
| 87 | def on_before_optimize(lr: float, epoch: int): | ||
| 88 | if accelerator.sync_gradients: | ||
| 89 | accelerator.clip_grad_norm_(lora_layers.parameters(), max_grad_norm) | ||
| 90 | |||
| 91 | @torch.no_grad() | ||
| 92 | def on_checkpoint(step, postfix): | ||
| 93 | print(f"Saving checkpoint for step {step}...") | ||
| 94 | orig_unet_dtype = unet.dtype | ||
| 95 | unet.to(dtype=torch.float32) | ||
| 96 | unet.save_attn_procs(checkpoint_output_dir.joinpath(f"{step}_{postfix}")) | ||
| 97 | unet.to(dtype=orig_unet_dtype) | ||
| 98 | |||
| 99 | @torch.no_grad() | ||
| 100 | def on_sample(step): | ||
| 101 | orig_unet_dtype = unet.dtype | ||
| 102 | unet.to(dtype=weight_dtype) | ||
| 103 | save_samples_(step=step) | ||
| 104 | unet.to(dtype=orig_unet_dtype) | ||
| 105 | |||
| 106 | if torch.cuda.is_available(): | ||
| 107 | torch.cuda.empty_cache() | ||
| 108 | |||
| 109 | return TrainingCallbacks( | ||
| 110 | on_prepare=on_prepare, | ||
| 111 | on_accum_model=on_accum_model, | ||
| 112 | on_train=on_train, | ||
| 113 | on_eval=on_eval, | ||
| 114 | on_before_optimize=on_before_optimize, | ||
| 115 | on_checkpoint=on_checkpoint, | ||
| 116 | on_sample=on_sample, | ||
| 117 | ) | ||
| 118 | |||
| 119 | |||
| 120 | def lora_prepare( | ||
| 121 | accelerator: Accelerator, | ||
| 122 | text_encoder: CLIPTextModel, | ||
| 123 | unet: UNet2DConditionModel, | ||
| 124 | optimizer: torch.optim.Optimizer, | ||
| 125 | train_dataloader: DataLoader, | ||
| 126 | val_dataloader: Optional[DataLoader], | ||
| 127 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, | ||
| 128 | lora_layers: AttnProcsLayers, | ||
| 129 | **kwargs | ||
| 130 | ): | ||
| 131 | weight_dtype = torch.float32 | ||
| 132 | if accelerator.state.mixed_precision == "fp16": | ||
| 133 | weight_dtype = torch.float16 | ||
| 134 | elif accelerator.state.mixed_precision == "bf16": | ||
| 135 | weight_dtype = torch.bfloat16 | ||
| 136 | |||
| 137 | lora_layers, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( | ||
| 138 | lora_layers, optimizer, train_dataloader, val_dataloader, lr_scheduler) | ||
| 139 | unet.to(accelerator.device, dtype=weight_dtype) | ||
| 140 | text_encoder.to(accelerator.device, dtype=weight_dtype) | ||
| 141 | return text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler, {"lora_layers": lora_layers} | ||
| 142 | |||
| 143 | |||
| 144 | lora_strategy = TrainingStrategy( | ||
| 145 | callbacks=lora_strategy_callbacks, | ||
| 146 | prepare=lora_prepare, | ||
| 147 | ) | ||
