diff options
author | Volpeon <git@volpeon.ink> | 2023-01-20 14:26:17 +0100 |
---|---|---|
committer | Volpeon <git@volpeon.ink> | 2023-01-20 14:26:17 +0100 |
commit | 3575d041f1507811b577fd2c653171fb51c0a386 (patch) | |
tree | 702f9f1ae4eafc6f8ea06560c4de6bbe1c2acecb /training/strategy | |
parent | Move Accelerator preparation into strategy (diff) | |
download | textual-inversion-diff-3575d041f1507811b577fd2c653171fb51c0a386.tar.gz textual-inversion-diff-3575d041f1507811b577fd2c653171fb51c0a386.tar.bz2 textual-inversion-diff-3575d041f1507811b577fd2c653171fb51c0a386.zip |
Restored LR finder
Diffstat (limited to 'training/strategy')
-rw-r--r-- | training/strategy/dreambooth.py | 4 | ||||
-rw-r--r-- | training/strategy/ti.py | 5 |
2 files changed, 3 insertions, 6 deletions
diff --git a/training/strategy/dreambooth.py b/training/strategy/dreambooth.py index 1277939..e88bf90 100644 --- a/training/strategy/dreambooth.py +++ b/training/strategy/dreambooth.py | |||
@@ -193,9 +193,7 @@ def dreambooth_prepare( | |||
193 | unet: UNet2DConditionModel, | 193 | unet: UNet2DConditionModel, |
194 | *args | 194 | *args |
195 | ): | 195 | ): |
196 | prep = [text_encoder, unet] + list(args) | 196 | return accelerator.prepare(text_encoder, unet, *args) |
197 | text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare(*prep) | ||
198 | return text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler | ||
199 | 197 | ||
200 | 198 | ||
201 | dreambooth_strategy = TrainingStrategy( | 199 | dreambooth_strategy = TrainingStrategy( |
diff --git a/training/strategy/ti.py b/training/strategy/ti.py index 6a76f98..14bdafd 100644 --- a/training/strategy/ti.py +++ b/training/strategy/ti.py | |||
@@ -176,10 +176,9 @@ def textual_inversion_prepare( | |||
176 | elif accelerator.state.mixed_precision == "bf16": | 176 | elif accelerator.state.mixed_precision == "bf16": |
177 | weight_dtype = torch.bfloat16 | 177 | weight_dtype = torch.bfloat16 |
178 | 178 | ||
179 | prep = [text_encoder] + list(args) | 179 | prepped = accelerator.prepare(text_encoder, *args) |
180 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare(*prep) | ||
181 | unet.to(accelerator.device, dtype=weight_dtype) | 180 | unet.to(accelerator.device, dtype=weight_dtype) |
182 | return text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler | 181 | return (prepped[0], unet) + prepped[1:] |
183 | 182 | ||
184 | 183 | ||
185 | textual_inversion_strategy = TrainingStrategy( | 184 | textual_inversion_strategy = TrainingStrategy( |