diff options
| author | Volpeon <git@volpeon.ink> | 2023-01-15 22:26:43 +0100 |
|---|---|---|
| committer | Volpeon <git@volpeon.ink> | 2023-01-15 22:26:43 +0100 |
| commit | 3f922880475c2c0a5679987d4a9a43606e838566 (patch) | |
| tree | 757746927e34aa7fddff1e44c837b489233029d7 /training/strategy | |
| parent | Restored functional trainer (diff) | |
| download | textual-inversion-diff-3f922880475c2c0a5679987d4a9a43606e838566.tar.gz textual-inversion-diff-3f922880475c2c0a5679987d4a9a43606e838566.tar.bz2 textual-inversion-diff-3f922880475c2c0a5679987d4a9a43606e838566.zip | |
Added Dreambooth strategy
Diffstat (limited to 'training/strategy')
| -rw-r--r-- | training/strategy/dreambooth.py | 183 |
1 files changed, 183 insertions, 0 deletions
diff --git a/training/strategy/dreambooth.py b/training/strategy/dreambooth.py new file mode 100644 index 0000000..6e7ebe2 --- /dev/null +++ b/training/strategy/dreambooth.py | |||
| @@ -0,0 +1,183 @@ | |||
| 1 | from contextlib import nullcontext | ||
| 2 | from typing import Optional | ||
| 3 | from functools import partial | ||
| 4 | from contextlib import contextmanager, nullcontext | ||
| 5 | from pathlib import Path | ||
| 6 | import itertools | ||
| 7 | |||
| 8 | import torch | ||
| 9 | from torch.utils.data import DataLoader | ||
| 10 | |||
| 11 | from accelerate import Accelerator | ||
| 12 | from transformers import CLIPTextModel | ||
| 13 | from diffusers import AutoencoderKL, UNet2DConditionModel, DPMSolverMultistepScheduler | ||
| 14 | |||
| 15 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | ||
| 16 | from models.clip.tokenizer import MultiCLIPTokenizer | ||
| 17 | from training.util import EMAModel | ||
| 18 | from training.functional import TrainingCallbacks, save_samples | ||
| 19 | |||
| 20 | |||
| 21 | def dreambooth_strategy( | ||
| 22 | accelerator: Accelerator, | ||
| 23 | unet: UNet2DConditionModel, | ||
| 24 | text_encoder: CLIPTextModel, | ||
| 25 | tokenizer: MultiCLIPTokenizer, | ||
| 26 | vae: AutoencoderKL, | ||
| 27 | sample_scheduler: DPMSolverMultistepScheduler, | ||
| 28 | train_dataloader: DataLoader, | ||
| 29 | val_dataloader: DataLoader, | ||
| 30 | output_dir: Path, | ||
| 31 | seed: int, | ||
| 32 | train_text_encoder_epochs: int, | ||
| 33 | max_grad_norm: float = 1.0, | ||
| 34 | use_ema: bool = False, | ||
| 35 | ema_inv_gamma: float = 1.0, | ||
| 36 | ema_power: int = 1, | ||
| 37 | ema_max_decay: float = 0.9999, | ||
| 38 | sample_batch_size: int = 1, | ||
| 39 | sample_num_batches: int = 1, | ||
| 40 | sample_num_steps: int = 20, | ||
| 41 | sample_guidance_scale: float = 7.5, | ||
| 42 | sample_image_size: Optional[int] = None, | ||
| 43 | ): | ||
| 44 | if accelerator.gradient_accumulation_steps > 1 and accelerator.num_processes > 1: | ||
| 45 | raise ValueError( | ||
| 46 | "Gradient accumulation is not supported when training the text encoder in distributed training. " | ||
| 47 | "Please set gradient_accumulation_steps to 1. This feature will be supported in the future." | ||
| 48 | ) | ||
| 49 | |||
| 50 | weight_dtype = torch.float32 | ||
| 51 | if accelerator.state.mixed_precision == "fp16": | ||
| 52 | weight_dtype = torch.float16 | ||
| 53 | elif accelerator.state.mixed_precision == "bf16": | ||
| 54 | weight_dtype = torch.bfloat16 | ||
| 55 | |||
| 56 | save_samples_ = partial( | ||
| 57 | save_samples, | ||
| 58 | accelerator=accelerator, | ||
| 59 | unet=unet, | ||
| 60 | text_encoder=text_encoder, | ||
| 61 | tokenizer=tokenizer, | ||
| 62 | vae=vae, | ||
| 63 | sample_scheduler=sample_scheduler, | ||
| 64 | train_dataloader=train_dataloader, | ||
| 65 | val_dataloader=val_dataloader, | ||
| 66 | dtype=weight_dtype, | ||
| 67 | output_dir=output_dir, | ||
| 68 | seed=seed, | ||
| 69 | batch_size=sample_batch_size, | ||
| 70 | num_batches=sample_num_batches, | ||
| 71 | num_steps=sample_num_steps, | ||
| 72 | guidance_scale=sample_guidance_scale, | ||
| 73 | image_size=sample_image_size, | ||
| 74 | ) | ||
| 75 | |||
| 76 | if use_ema: | ||
| 77 | ema_unet = EMAModel( | ||
| 78 | unet.parameters(), | ||
| 79 | inv_gamma=ema_inv_gamma, | ||
| 80 | power=ema_power, | ||
| 81 | max_value=ema_max_decay, | ||
| 82 | ) | ||
| 83 | else: | ||
| 84 | ema_unet = None | ||
| 85 | |||
| 86 | def ema_context(): | ||
| 87 | if use_ema: | ||
| 88 | return ema_unet.apply_temporary(unet.parameters()) | ||
| 89 | else: | ||
| 90 | return nullcontext() | ||
| 91 | |||
| 92 | def on_model(): | ||
| 93 | return unet | ||
| 94 | |||
| 95 | def on_prepare(): | ||
| 96 | unet.requires_grad_(True) | ||
| 97 | text_encoder.requires_grad_(True) | ||
| 98 | text_encoder.text_model.embeddings.persist() | ||
| 99 | text_encoder.text_model.embeddings.temp_token_embedding.requires_grad_(False) | ||
| 100 | |||
| 101 | if use_ema: | ||
| 102 | ema_unet.to(accelerator.device) | ||
| 103 | |||
| 104 | @contextmanager | ||
| 105 | def on_train(epoch: int): | ||
| 106 | tokenizer.train() | ||
| 107 | |||
| 108 | if epoch < train_text_encoder_epochs: | ||
| 109 | text_encoder.train() | ||
| 110 | elif epoch == train_text_encoder_epochs: | ||
| 111 | text_encoder.requires_grad_(False) | ||
| 112 | text_encoder.eval() | ||
| 113 | |||
| 114 | yield | ||
| 115 | |||
| 116 | @contextmanager | ||
| 117 | def on_eval(): | ||
| 118 | tokenizer.eval() | ||
| 119 | text_encoder.eval() | ||
| 120 | |||
| 121 | with ema_context(): | ||
| 122 | yield | ||
| 123 | |||
| 124 | def on_before_optimize(epoch: int): | ||
| 125 | if accelerator.sync_gradients: | ||
| 126 | params_to_clip = [unet.parameters()] | ||
| 127 | if epoch < train_text_encoder_epochs: | ||
| 128 | params_to_clip.append(text_encoder.parameters()) | ||
| 129 | accelerator.clip_grad_norm_(itertools.chain(*params_to_clip), max_grad_norm) | ||
| 130 | |||
| 131 | @torch.no_grad() | ||
| 132 | def on_after_optimize(lr: float): | ||
| 133 | if use_ema: | ||
| 134 | ema_unet.step(unet.parameters()) | ||
| 135 | |||
| 136 | def on_log(): | ||
| 137 | if use_ema: | ||
| 138 | return {"ema_decay": ema_unet.decay} | ||
| 139 | return {} | ||
| 140 | |||
| 141 | @torch.no_grad() | ||
| 142 | def on_checkpoint(step, postfix): | ||
| 143 | if postfix != "end": | ||
| 144 | return | ||
| 145 | |||
| 146 | print("Saving model...") | ||
| 147 | |||
| 148 | unet_ = accelerator.unwrap_model(unet) | ||
| 149 | text_encoder_ = accelerator.unwrap_model(text_encoder) | ||
| 150 | |||
| 151 | with ema_context(): | ||
| 152 | pipeline = VlpnStableDiffusion( | ||
| 153 | text_encoder=text_encoder_, | ||
| 154 | vae=vae, | ||
| 155 | unet=unet_, | ||
| 156 | tokenizer=tokenizer, | ||
| 157 | scheduler=sample_scheduler, | ||
| 158 | ) | ||
| 159 | pipeline.save_pretrained(output_dir.joinpath("model")) | ||
| 160 | |||
| 161 | del unet_ | ||
| 162 | del text_encoder_ | ||
| 163 | del pipeline | ||
| 164 | |||
| 165 | if torch.cuda.is_available(): | ||
| 166 | torch.cuda.empty_cache() | ||
| 167 | |||
| 168 | @torch.no_grad() | ||
| 169 | def on_sample(step): | ||
| 170 | with ema_context(): | ||
| 171 | save_samples_(step=step) | ||
| 172 | |||
| 173 | return TrainingCallbacks( | ||
| 174 | on_prepare=on_prepare, | ||
| 175 | on_model=on_model, | ||
| 176 | on_train=on_train, | ||
| 177 | on_eval=on_eval, | ||
| 178 | on_before_optimize=on_before_optimize, | ||
| 179 | on_after_optimize=on_after_optimize, | ||
| 180 | on_log=on_log, | ||
| 181 | on_checkpoint=on_checkpoint, | ||
| 182 | on_sample=on_sample, | ||
| 183 | ) | ||
