diff options
| author | Volpeon <git@volpeon.ink> | 2023-01-15 12:33:52 +0100 |
|---|---|---|
| committer | Volpeon <git@volpeon.ink> | 2023-01-15 12:33:52 +0100 |
| commit | 59bf501198d7ff6c0c03c45e92adef14069d5ac6 (patch) | |
| tree | aae4c7204b4f04bf2146408fb88892071840a05d /training/strategy | |
| parent | Removed unused code, put training callbacks in dataclass (diff) | |
| download | textual-inversion-diff-59bf501198d7ff6c0c03c45e92adef14069d5ac6.tar.gz textual-inversion-diff-59bf501198d7ff6c0c03c45e92adef14069d5ac6.tar.bz2 textual-inversion-diff-59bf501198d7ff6c0c03c45e92adef14069d5ac6.zip | |
Update
Diffstat (limited to 'training/strategy')
| -rw-r--r-- | training/strategy/ti.py | 54 |
1 files changed, 26 insertions, 28 deletions
diff --git a/training/strategy/ti.py b/training/strategy/ti.py index 6f8384f..753dce0 100644 --- a/training/strategy/ti.py +++ b/training/strategy/ti.py | |||
| @@ -27,7 +27,6 @@ def textual_inversion_strategy( | |||
| 27 | sample_scheduler: DPMSolverMultistepScheduler, | 27 | sample_scheduler: DPMSolverMultistepScheduler, |
| 28 | train_dataloader: DataLoader, | 28 | train_dataloader: DataLoader, |
| 29 | val_dataloader: DataLoader, | 29 | val_dataloader: DataLoader, |
| 30 | dtype: torch.dtype, | ||
| 31 | output_dir: Path, | 30 | output_dir: Path, |
| 32 | seed: int, | 31 | seed: int, |
| 33 | placeholder_tokens: list[str], | 32 | placeholder_tokens: list[str], |
| @@ -48,6 +47,12 @@ def textual_inversion_strategy( | |||
| 48 | sample_guidance_scale: float = 7.5, | 47 | sample_guidance_scale: float = 7.5, |
| 49 | sample_image_size: Optional[int] = None, | 48 | sample_image_size: Optional[int] = None, |
| 50 | ): | 49 | ): |
| 50 | weight_dtype = torch.float32 | ||
| 51 | if accelerator.state.mixed_precision == "fp16": | ||
| 52 | weight_dtype = torch.float16 | ||
| 53 | elif accelerator.state.mixed_precision == "bf16": | ||
| 54 | weight_dtype = torch.bfloat16 | ||
| 55 | |||
| 51 | save_samples_ = partial( | 56 | save_samples_ = partial( |
| 52 | save_samples, | 57 | save_samples, |
| 53 | accelerator=accelerator, | 58 | accelerator=accelerator, |
| @@ -58,7 +63,7 @@ def textual_inversion_strategy( | |||
| 58 | sample_scheduler=sample_scheduler, | 63 | sample_scheduler=sample_scheduler, |
| 59 | train_dataloader=train_dataloader, | 64 | train_dataloader=train_dataloader, |
| 60 | val_dataloader=val_dataloader, | 65 | val_dataloader=val_dataloader, |
| 61 | dtype=dtype, | 66 | dtype=weight_dtype, |
| 62 | output_dir=output_dir, | 67 | output_dir=output_dir, |
| 63 | seed=seed, | 68 | seed=seed, |
| 64 | batch_size=sample_batch_size, | 69 | batch_size=sample_batch_size, |
| @@ -78,6 +83,17 @@ def textual_inversion_strategy( | |||
| 78 | else: | 83 | else: |
| 79 | ema_embeddings = None | 84 | ema_embeddings = None |
| 80 | 85 | ||
| 86 | def ema_context(): | ||
| 87 | if use_ema: | ||
| 88 | return ema_embeddings.apply_temporary( | ||
| 89 | text_encoder.text_model.embeddings.temp_token_embedding.parameters() | ||
| 90 | ) | ||
| 91 | else: | ||
| 92 | return nullcontext() | ||
| 93 | |||
| 94 | def on_model(): | ||
| 95 | return text_encoder | ||
| 96 | |||
| 81 | def on_prepare(): | 97 | def on_prepare(): |
| 82 | text_encoder.text_model.embeddings.temp_token_embedding.requires_grad_(True) | 98 | text_encoder.text_model.embeddings.temp_token_embedding.requires_grad_(True) |
| 83 | 99 | ||
| @@ -89,24 +105,15 @@ def textual_inversion_strategy( | |||
| 89 | 105 | ||
| 90 | @contextmanager | 106 | @contextmanager |
| 91 | def on_train(epoch: int): | 107 | def on_train(epoch: int): |
| 92 | try: | 108 | tokenizer.train() |
| 93 | tokenizer.train() | 109 | yield |
| 94 | yield | ||
| 95 | finally: | ||
| 96 | pass | ||
| 97 | 110 | ||
| 98 | @contextmanager | 111 | @contextmanager |
| 99 | def on_eval(): | 112 | def on_eval(): |
| 100 | try: | 113 | tokenizer.eval() |
| 101 | tokenizer.eval() | ||
| 102 | 114 | ||
| 103 | ema_context = ema_embeddings.apply_temporary( | 115 | with ema_context(): |
| 104 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) if use_ema else nullcontext() | 116 | yield |
| 105 | |||
| 106 | with ema_context: | ||
| 107 | yield | ||
| 108 | finally: | ||
| 109 | pass | ||
| 110 | 117 | ||
| 111 | @torch.no_grad() | 118 | @torch.no_grad() |
| 112 | def on_after_optimize(lr: float): | 119 | def on_after_optimize(lr: float): |
| @@ -131,13 +138,7 @@ def textual_inversion_strategy( | |||
| 131 | checkpoints_path = output_dir.joinpath("checkpoints") | 138 | checkpoints_path = output_dir.joinpath("checkpoints") |
| 132 | checkpoints_path.mkdir(parents=True, exist_ok=True) | 139 | checkpoints_path.mkdir(parents=True, exist_ok=True) |
| 133 | 140 | ||
| 134 | text_encoder = accelerator.unwrap_model(text_encoder) | 141 | with ema_context(): |
| 135 | |||
| 136 | ema_context = ema_embeddings.apply_temporary( | ||
| 137 | text_encoder.text_model.embeddings.temp_token_embedding.parameters() | ||
| 138 | ) if ema_embeddings is not None else nullcontext() | ||
| 139 | |||
| 140 | with ema_context: | ||
| 141 | for (token, ids) in zip(placeholder_tokens, placeholder_token_ids): | 142 | for (token, ids) in zip(placeholder_tokens, placeholder_token_ids): |
| 142 | text_encoder.text_model.embeddings.save_embed( | 143 | text_encoder.text_model.embeddings.save_embed( |
| 143 | ids, | 144 | ids, |
| @@ -146,15 +147,12 @@ def textual_inversion_strategy( | |||
| 146 | 147 | ||
| 147 | @torch.no_grad() | 148 | @torch.no_grad() |
| 148 | def on_sample(step): | 149 | def on_sample(step): |
| 149 | ema_context = ema_embeddings.apply_temporary( | 150 | with ema_context(): |
| 150 | text_encoder.text_model.embeddings.temp_token_embedding.parameters() | ||
| 151 | ) if ema_embeddings is not None else nullcontext() | ||
| 152 | |||
| 153 | with ema_context: | ||
| 154 | save_samples_(step=step) | 151 | save_samples_(step=step) |
| 155 | 152 | ||
| 156 | return TrainingCallbacks( | 153 | return TrainingCallbacks( |
| 157 | on_prepare=on_prepare, | 154 | on_prepare=on_prepare, |
| 155 | on_model=on_model, | ||
| 158 | on_train=on_train, | 156 | on_train=on_train, |
| 159 | on_eval=on_eval, | 157 | on_eval=on_eval, |
| 160 | on_after_optimize=on_after_optimize, | 158 | on_after_optimize=on_after_optimize, |
