diff options
| author | Volpeon <git@volpeon.ink> | 2023-01-15 09:25:30 +0100 |
|---|---|---|
| committer | Volpeon <git@volpeon.ink> | 2023-01-15 09:25:30 +0100 |
| commit | 5b9a3de142e7a645573b4f4a8c1ce9c59746ab08 (patch) | |
| tree | c551bd9a3f2f85f7aeb1e7f4bd3b2ebd0cb20450 /training | |
| parent | Update (diff) | |
| download | textual-inversion-diff-5b9a3de142e7a645573b4f4a8c1ce9c59746ab08.tar.gz textual-inversion-diff-5b9a3de142e7a645573b4f4a8c1ce9c59746ab08.tar.bz2 textual-inversion-diff-5b9a3de142e7a645573b4f4a8c1ce9c59746ab08.zip | |
Added functional trainer
Diffstat (limited to 'training')
| -rw-r--r-- | training/functional.py | 75 |
1 files changed, 74 insertions, 1 deletions
diff --git a/training/functional.py b/training/functional.py index c5b514a..1f2ca6d 100644 --- a/training/functional.py +++ b/training/functional.py | |||
| @@ -1,6 +1,7 @@ | |||
| 1 | import math | 1 | import math |
| 2 | from contextlib import _GeneratorContextManager, nullcontext | 2 | from contextlib import _GeneratorContextManager, nullcontext |
| 3 | from typing import Callable, Any, Tuple, Union | 3 | from typing import Callable, Any, Tuple, Union, Optional |
| 4 | from functools import partial | ||
| 4 | 5 | ||
| 5 | import torch | 6 | import torch |
| 6 | import torch.nn.functional as F | 7 | import torch.nn.functional as F |
| @@ -376,3 +377,75 @@ def train_loop( | |||
| 376 | print("Interrupted") | 377 | print("Interrupted") |
| 377 | on_checkpoint(global_step + global_step_offset, "end") | 378 | on_checkpoint(global_step + global_step_offset, "end") |
| 378 | accelerator.end_training() | 379 | accelerator.end_training() |
| 380 | |||
| 381 | |||
| 382 | def train( | ||
| 383 | accelerator: Accelerator, | ||
| 384 | unet: UNet2DConditionModel, | ||
| 385 | text_encoder: CLIPTextModel, | ||
| 386 | vae: AutoencoderKL, | ||
| 387 | noise_scheduler: DDPMScheduler, | ||
| 388 | train_dataloader: DataLoader, | ||
| 389 | val_dataloader: DataLoader, | ||
| 390 | dtype: torch.dtype, | ||
| 391 | seed: int, | ||
| 392 | optimizer: torch.optim.Optimizer, | ||
| 393 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, | ||
| 394 | num_train_epochs: int = 100, | ||
| 395 | sample_frequency: int = 20, | ||
| 396 | checkpoint_frequency: int = 50, | ||
| 397 | global_step_offset: int = 0, | ||
| 398 | prior_loss_weight: float = 0, | ||
| 399 | on_prepare: Callable[[], dict[str, Any]] = const({}), | ||
| 400 | on_log: Callable[[], dict[str, Any]] = const({}), | ||
| 401 | on_train: Callable[[int], _GeneratorContextManager] = const(nullcontext()), | ||
| 402 | on_before_optimize: Callable[[int], None] = const(), | ||
| 403 | on_after_optimize: Callable[[float], None] = const(), | ||
| 404 | on_eval: Callable[[], _GeneratorContextManager] = const(nullcontext()), | ||
| 405 | on_sample: Callable[[int], None] = const(), | ||
| 406 | on_checkpoint: Callable[[int, str], None] = const(), | ||
| 407 | ): | ||
| 408 | unet, text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( | ||
| 409 | unet, text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler | ||
| 410 | ) | ||
| 411 | |||
| 412 | vae.to(accelerator.device, dtype=dtype) | ||
| 413 | |||
| 414 | for model in (unet, text_encoder, vae): | ||
| 415 | model.requires_grad_(False) | ||
| 416 | model.eval() | ||
| 417 | |||
| 418 | on_prepare() | ||
| 419 | |||
| 420 | loss_step_ = partial( | ||
| 421 | loss_step, | ||
| 422 | vae, | ||
| 423 | noise_scheduler, | ||
| 424 | unet, | ||
| 425 | text_encoder, | ||
| 426 | prior_loss_weight, | ||
| 427 | seed, | ||
| 428 | ) | ||
| 429 | |||
| 430 | train_loop( | ||
| 431 | accelerator=accelerator, | ||
| 432 | optimizer=optimizer, | ||
| 433 | lr_scheduler=lr_scheduler, | ||
| 434 | model=text_encoder, | ||
| 435 | train_dataloader=train_dataloader, | ||
| 436 | val_dataloader=val_dataloader, | ||
| 437 | loss_step=loss_step_, | ||
| 438 | sample_frequency=sample_frequency, | ||
| 439 | checkpoint_frequency=checkpoint_frequency, | ||
| 440 | global_step_offset=global_step_offset, | ||
| 441 | num_epochs=num_train_epochs, | ||
| 442 | on_log=on_log, | ||
| 443 | on_train=on_train, | ||
| 444 | on_before_optimize=on_before_optimize, | ||
| 445 | on_after_optimize=on_after_optimize, | ||
| 446 | on_eval=on_eval, | ||
| 447 | on_sample=on_sample, | ||
| 448 | on_checkpoint=on_checkpoint, | ||
| 449 | ) | ||
| 450 | |||
| 451 | accelerator.free_memory() | ||
