diff options
| author | Volpeon <git@volpeon.ink> | 2023-01-13 13:49:35 +0100 |
|---|---|---|
| committer | Volpeon <git@volpeon.ink> | 2023-01-13 13:49:35 +0100 |
| commit | 7b149930bb53b93db74106ad20a30abf4b114f9b (patch) | |
| tree | 67c2ccbce2a9838ad8a020ee527b19113e67e30a /training | |
| parent | Added TI decay start offset (diff) | |
| download | textual-inversion-diff-7b149930bb53b93db74106ad20a30abf4b114f9b.tar.gz textual-inversion-diff-7b149930bb53b93db74106ad20a30abf4b114f9b.tar.bz2 textual-inversion-diff-7b149930bb53b93db74106ad20a30abf4b114f9b.zip | |
Removed PromptProcessor, modularized training loop
Diffstat (limited to 'training')
| -rw-r--r-- | training/common.py | 205 | ||||
| -rw-r--r-- | training/util.py | 13 |
2 files changed, 208 insertions, 10 deletions
diff --git a/training/common.py b/training/common.py index 90cf910..842ac07 100644 --- a/training/common.py +++ b/training/common.py | |||
| @@ -1,14 +1,30 @@ | |||
| 1 | import math | 1 | import math |
| 2 | from contextlib import _GeneratorContextManager, nullcontext | ||
| 3 | from typing import Callable, Any, Tuple, Union | ||
| 2 | 4 | ||
| 3 | import torch | 5 | import torch |
| 4 | import torch.nn.functional as F | 6 | import torch.nn.functional as F |
| 7 | from torch.utils.data import DataLoader | ||
| 5 | 8 | ||
| 9 | from accelerate import Accelerator | ||
| 10 | from transformers import CLIPTokenizer, CLIPTextModel | ||
| 6 | from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel | 11 | from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel |
| 7 | from diffusers.optimization import get_scheduler as get_scheduler_, get_cosine_with_hard_restarts_schedule_with_warmup | 12 | from diffusers.optimization import get_scheduler as get_scheduler_, get_cosine_with_hard_restarts_schedule_with_warmup |
| 8 | 13 | ||
| 9 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | 14 | from tqdm.auto import tqdm |
| 10 | 15 | ||
| 16 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | ||
| 17 | from models.clip.util import get_extended_embeddings | ||
| 11 | from training.optimization import get_one_cycle_schedule | 18 | from training.optimization import get_one_cycle_schedule |
| 19 | from training.util import AverageMeter, CheckpointerBase | ||
| 20 | |||
| 21 | |||
| 22 | def noop(*args, **kwards): | ||
| 23 | pass | ||
| 24 | |||
| 25 | |||
| 26 | def noop_on_log(): | ||
| 27 | return {} | ||
| 12 | 28 | ||
| 13 | 29 | ||
| 14 | def get_scheduler( | 30 | def get_scheduler( |
| @@ -22,10 +38,11 @@ def get_scheduler( | |||
| 22 | cycles: int, | 38 | cycles: int, |
| 23 | warmup_epochs: int, | 39 | warmup_epochs: int, |
| 24 | optimizer: torch.optim.Optimizer, | 40 | optimizer: torch.optim.Optimizer, |
| 25 | max_train_steps: int, | 41 | num_train_epochs: int, |
| 26 | num_update_steps_per_epoch: int, | 42 | num_update_steps_per_epoch: int, |
| 27 | gradient_accumulation_steps: int, | 43 | gradient_accumulation_steps: int, |
| 28 | ): | 44 | ): |
| 45 | num_train_steps = num_train_epochs * num_update_steps_per_epoch | ||
| 29 | warmup_steps = warmup_epochs * num_update_steps_per_epoch * gradient_accumulation_steps | 46 | warmup_steps = warmup_epochs * num_update_steps_per_epoch * gradient_accumulation_steps |
| 30 | 47 | ||
| 31 | if id == "one_cycle": | 48 | if id == "one_cycle": |
| @@ -33,7 +50,7 @@ def get_scheduler( | |||
| 33 | 50 | ||
| 34 | lr_scheduler = get_one_cycle_schedule( | 51 | lr_scheduler = get_one_cycle_schedule( |
| 35 | optimizer=optimizer, | 52 | optimizer=optimizer, |
| 36 | num_training_steps=max_train_steps * gradient_accumulation_steps, | 53 | num_training_steps=num_train_steps * gradient_accumulation_steps, |
| 37 | warmup=warmup_func, | 54 | warmup=warmup_func, |
| 38 | annealing=annealing_func, | 55 | annealing=annealing_func, |
| 39 | warmup_exp=warmup_exp, | 56 | warmup_exp=warmup_exp, |
| @@ -42,12 +59,12 @@ def get_scheduler( | |||
| 42 | ) | 59 | ) |
| 43 | elif id == "cosine_with_restarts": | 60 | elif id == "cosine_with_restarts": |
| 44 | cycles = cycles if cycles is not None else math.ceil( | 61 | cycles = cycles if cycles is not None else math.ceil( |
| 45 | math.sqrt(((max_train_steps - warmup_steps) / num_update_steps_per_epoch))) | 62 | math.sqrt(((num_train_steps - warmup_steps) / num_update_steps_per_epoch))) |
| 46 | 63 | ||
| 47 | lr_scheduler = get_cosine_with_hard_restarts_schedule_with_warmup( | 64 | lr_scheduler = get_cosine_with_hard_restarts_schedule_with_warmup( |
| 48 | optimizer=optimizer, | 65 | optimizer=optimizer, |
| 49 | num_warmup_steps=warmup_steps, | 66 | num_warmup_steps=warmup_steps, |
| 50 | num_training_steps=max_train_steps * gradient_accumulation_steps, | 67 | num_training_steps=num_train_steps * gradient_accumulation_steps, |
| 51 | num_cycles=cycles, | 68 | num_cycles=cycles, |
| 52 | ) | 69 | ) |
| 53 | else: | 70 | else: |
| @@ -55,7 +72,7 @@ def get_scheduler( | |||
| 55 | id, | 72 | id, |
| 56 | optimizer=optimizer, | 73 | optimizer=optimizer, |
| 57 | num_warmup_steps=warmup_steps, | 74 | num_warmup_steps=warmup_steps, |
| 58 | num_training_steps=max_train_steps * gradient_accumulation_steps, | 75 | num_training_steps=num_train_steps * gradient_accumulation_steps, |
| 59 | ) | 76 | ) |
| 60 | 77 | ||
| 61 | return lr_scheduler | 78 | return lr_scheduler |
| @@ -117,12 +134,12 @@ def loss_step( | |||
| 117 | vae: AutoencoderKL, | 134 | vae: AutoencoderKL, |
| 118 | noise_scheduler: DDPMScheduler, | 135 | noise_scheduler: DDPMScheduler, |
| 119 | unet: UNet2DConditionModel, | 136 | unet: UNet2DConditionModel, |
| 120 | prompt_processor, | 137 | text_encoder: CLIPTextModel, |
| 121 | num_class_images: int, | 138 | num_class_images: int, |
| 122 | prior_loss_weight: float, | 139 | prior_loss_weight: float, |
| 123 | seed: int, | 140 | seed: int, |
| 124 | step: int, | 141 | step: int, |
| 125 | batch, | 142 | batch: dict[str, Any], |
| 126 | eval: bool = False | 143 | eval: bool = False |
| 127 | ): | 144 | ): |
| 128 | # Convert images to latent space | 145 | # Convert images to latent space |
| @@ -149,7 +166,8 @@ def loss_step( | |||
| 149 | noisy_latents = noisy_latents.to(dtype=unet.dtype) | 166 | noisy_latents = noisy_latents.to(dtype=unet.dtype) |
| 150 | 167 | ||
| 151 | # Get the text embedding for conditioning | 168 | # Get the text embedding for conditioning |
| 152 | encoder_hidden_states = prompt_processor.get_embeddings( | 169 | encoder_hidden_states = get_extended_embeddings( |
| 170 | text_encoder, | ||
| 153 | batch["input_ids"], | 171 | batch["input_ids"], |
| 154 | batch["attention_mask"] | 172 | batch["attention_mask"] |
| 155 | ) | 173 | ) |
| @@ -185,3 +203,172 @@ def loss_step( | |||
| 185 | acc = (model_pred == target).float().mean() | 203 | acc = (model_pred == target).float().mean() |
| 186 | 204 | ||
| 187 | return loss, acc, bsz | 205 | return loss, acc, bsz |
| 206 | |||
| 207 | |||
| 208 | def train_loop( | ||
| 209 | accelerator: Accelerator, | ||
| 210 | optimizer: torch.optim.Optimizer, | ||
| 211 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, | ||
| 212 | model: torch.nn.Module, | ||
| 213 | checkpointer: CheckpointerBase, | ||
| 214 | train_dataloader: DataLoader, | ||
| 215 | val_dataloader: DataLoader, | ||
| 216 | loss_step: Union[Callable[[int, Any], Tuple[Any, Any, int]], Callable[[int, Any, bool], Tuple[Any, Any, int]]], | ||
| 217 | sample_frequency: int = 10, | ||
| 218 | sample_steps: int = 20, | ||
| 219 | checkpoint_frequency: int = 50, | ||
| 220 | global_step_offset: int = 0, | ||
| 221 | gradient_accumulation_steps: int = 1, | ||
| 222 | num_epochs: int = 100, | ||
| 223 | on_log: Callable[[], dict[str, Any]] = noop_on_log, | ||
| 224 | on_train: Callable[[], _GeneratorContextManager] = nullcontext, | ||
| 225 | on_before_optimize: Callable[[], None] = noop, | ||
| 226 | on_after_optimize: Callable[[float], None] = noop, | ||
| 227 | on_eval: Callable[[], _GeneratorContextManager] = nullcontext | ||
| 228 | ): | ||
| 229 | num_update_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps) | ||
| 230 | num_train_steps = num_epochs * num_update_steps_per_epoch | ||
| 231 | |||
| 232 | num_val_steps_per_epoch = len(val_dataloader) | ||
| 233 | num_epochs = math.ceil(num_train_steps / num_update_steps_per_epoch) | ||
| 234 | num_val_steps = num_val_steps_per_epoch * num_epochs | ||
| 235 | |||
| 236 | global_step = 0 | ||
| 237 | |||
| 238 | avg_loss = AverageMeter() | ||
| 239 | avg_acc = AverageMeter() | ||
| 240 | |||
| 241 | avg_loss_val = AverageMeter() | ||
| 242 | avg_acc_val = AverageMeter() | ||
| 243 | |||
| 244 | max_acc_val = 0.0 | ||
| 245 | |||
| 246 | local_progress_bar = tqdm( | ||
| 247 | range(num_update_steps_per_epoch + num_val_steps_per_epoch), | ||
| 248 | disable=not accelerator.is_local_main_process, | ||
| 249 | dynamic_ncols=True | ||
| 250 | ) | ||
| 251 | local_progress_bar.set_description(f"Epoch 1 / {num_epochs}") | ||
| 252 | |||
| 253 | global_progress_bar = tqdm( | ||
| 254 | range(num_train_steps + num_val_steps), | ||
| 255 | disable=not accelerator.is_local_main_process, | ||
| 256 | dynamic_ncols=True | ||
| 257 | ) | ||
| 258 | global_progress_bar.set_description("Total progress") | ||
| 259 | |||
| 260 | try: | ||
| 261 | for epoch in range(num_epochs): | ||
| 262 | if accelerator.is_main_process: | ||
| 263 | if epoch % sample_frequency == 0: | ||
| 264 | checkpointer.save_samples(global_step + global_step_offset, sample_steps) | ||
| 265 | |||
| 266 | if epoch % checkpoint_frequency == 0 and epoch != 0: | ||
| 267 | checkpointer.checkpoint(global_step + global_step_offset, "training") | ||
| 268 | |||
| 269 | local_progress_bar.set_description(f"Epoch {epoch + 1} / {num_epochs}") | ||
| 270 | local_progress_bar.reset() | ||
| 271 | |||
| 272 | model.train() | ||
| 273 | |||
| 274 | with on_train(): | ||
| 275 | for step, batch in enumerate(train_dataloader): | ||
| 276 | with accelerator.accumulate(model): | ||
| 277 | loss, acc, bsz = loss_step(step, batch) | ||
| 278 | |||
| 279 | accelerator.backward(loss) | ||
| 280 | |||
| 281 | on_before_optimize() | ||
| 282 | |||
| 283 | optimizer.step() | ||
| 284 | lr_scheduler.step() | ||
| 285 | optimizer.zero_grad(set_to_none=True) | ||
| 286 | |||
| 287 | avg_loss.update(loss.detach_(), bsz) | ||
| 288 | avg_acc.update(acc.detach_(), bsz) | ||
| 289 | |||
| 290 | # Checks if the accelerator has performed an optimization step behind the scenes | ||
| 291 | if accelerator.sync_gradients: | ||
| 292 | on_after_optimize(lr_scheduler.get_last_lr()[0]) | ||
| 293 | |||
| 294 | local_progress_bar.update(1) | ||
| 295 | global_progress_bar.update(1) | ||
| 296 | |||
| 297 | global_step += 1 | ||
| 298 | |||
| 299 | logs = { | ||
| 300 | "train/loss": avg_loss.avg.item(), | ||
| 301 | "train/acc": avg_acc.avg.item(), | ||
| 302 | "train/cur_loss": loss.item(), | ||
| 303 | "train/cur_acc": acc.item(), | ||
| 304 | "lr": lr_scheduler.get_last_lr()[0], | ||
| 305 | } | ||
| 306 | logs.update(on_log()) | ||
| 307 | |||
| 308 | accelerator.log(logs, step=global_step) | ||
| 309 | |||
| 310 | local_progress_bar.set_postfix(**logs) | ||
| 311 | |||
| 312 | if global_step >= num_train_steps: | ||
| 313 | break | ||
| 314 | |||
| 315 | accelerator.wait_for_everyone() | ||
| 316 | |||
| 317 | model.eval() | ||
| 318 | |||
| 319 | cur_loss_val = AverageMeter() | ||
| 320 | cur_acc_val = AverageMeter() | ||
| 321 | |||
| 322 | with torch.inference_mode(): | ||
| 323 | with on_eval(): | ||
| 324 | for step, batch in enumerate(val_dataloader): | ||
| 325 | loss, acc, bsz = loss_step(step, batch, True) | ||
| 326 | |||
| 327 | loss = loss.detach_() | ||
| 328 | acc = acc.detach_() | ||
| 329 | |||
| 330 | cur_loss_val.update(loss, bsz) | ||
| 331 | cur_acc_val.update(acc, bsz) | ||
| 332 | |||
| 333 | avg_loss_val.update(loss, bsz) | ||
| 334 | avg_acc_val.update(acc, bsz) | ||
| 335 | |||
| 336 | local_progress_bar.update(1) | ||
| 337 | global_progress_bar.update(1) | ||
| 338 | |||
| 339 | logs = { | ||
| 340 | "val/loss": avg_loss_val.avg.item(), | ||
| 341 | "val/acc": avg_acc_val.avg.item(), | ||
| 342 | "val/cur_loss": loss.item(), | ||
| 343 | "val/cur_acc": acc.item(), | ||
| 344 | } | ||
| 345 | local_progress_bar.set_postfix(**logs) | ||
| 346 | |||
| 347 | logs["val/cur_loss"] = cur_loss_val.avg.item() | ||
| 348 | logs["val/cur_acc"] = cur_acc_val.avg.item() | ||
| 349 | |||
| 350 | accelerator.log(logs, step=global_step) | ||
| 351 | |||
| 352 | local_progress_bar.clear() | ||
| 353 | global_progress_bar.clear() | ||
| 354 | |||
| 355 | if accelerator.is_main_process: | ||
| 356 | if avg_acc_val.avg.item() > max_acc_val: | ||
| 357 | accelerator.print( | ||
| 358 | f"Global step {global_step}: Validation accuracy reached new maximum: {max_acc_val:.2e} -> {avg_acc_val.avg.item():.2e}") | ||
| 359 | checkpointer.checkpoint(global_step + global_step_offset, "milestone") | ||
| 360 | max_acc_val = avg_acc_val.avg.item() | ||
| 361 | |||
| 362 | # Create the pipeline using using the trained modules and save it. | ||
| 363 | if accelerator.is_main_process: | ||
| 364 | print("Finished!") | ||
| 365 | checkpointer.checkpoint(global_step + global_step_offset, "end") | ||
| 366 | checkpointer.save_samples(global_step + global_step_offset, sample_steps) | ||
| 367 | accelerator.end_training() | ||
| 368 | |||
| 369 | except KeyboardInterrupt: | ||
| 370 | if accelerator.is_main_process: | ||
| 371 | print("Interrupted") | ||
| 372 | checkpointer.checkpoint(global_step + global_step_offset, "end") | ||
| 373 | accelerator.end_training() | ||
| 374 | quit() | ||
diff --git a/training/util.py b/training/util.py index 60d64f0..0ec2032 100644 --- a/training/util.py +++ b/training/util.py | |||
| @@ -55,8 +55,19 @@ class CheckpointerBase: | |||
| 55 | self.sample_batches = sample_batches | 55 | self.sample_batches = sample_batches |
| 56 | self.sample_batch_size = sample_batch_size | 56 | self.sample_batch_size = sample_batch_size |
| 57 | 57 | ||
| 58 | @torch.no_grad() | ||
| 59 | def checkpoint(self, step: int, postfix: str): | ||
| 60 | pass | ||
| 61 | |||
| 58 | @torch.inference_mode() | 62 | @torch.inference_mode() |
| 59 | def save_samples(self, pipeline, step, num_inference_steps, guidance_scale=7.5, eta=0.0): | 63 | def save_samples( |
| 64 | self, | ||
| 65 | pipeline, | ||
| 66 | step: int, | ||
| 67 | num_inference_steps: int, | ||
| 68 | guidance_scale: float = 7.5, | ||
| 69 | eta: float = 0.0 | ||
| 70 | ): | ||
| 60 | samples_path = Path(self.output_dir).joinpath("samples") | 71 | samples_path = Path(self.output_dir).joinpath("samples") |
| 61 | 72 | ||
| 62 | train_data = self.datamodule.train_dataloader | 73 | train_data = self.datamodule.train_dataloader |
