diff options
| -rw-r--r-- | models/hypernetwork.py | 138 |
1 files changed, 0 insertions, 138 deletions
diff --git a/models/hypernetwork.py b/models/hypernetwork.py deleted file mode 100644 index fe8a312..0000000 --- a/models/hypernetwork.py +++ /dev/null | |||
| @@ -1,138 +0,0 @@ | |||
| 1 | import math | ||
| 2 | from typing import Dict, Optional, Iterable, List, Tuple, Any | ||
| 3 | import copy | ||
| 4 | import torch | ||
| 5 | import numpy as np | ||
| 6 | from torch import nn | ||
| 7 | from functorch import make_functional, make_functional_with_buffers | ||
| 8 | from diffusers.configuration_utils import ConfigMixin, register_to_config | ||
| 9 | from diffusers.modeling_utils import ModelMixin | ||
| 10 | |||
| 11 | |||
| 12 | def get_weight_chunk_dims(num_target_parameters: int, num_embeddings: int): | ||
| 13 | weight_chunk_dim = math.ceil(num_target_parameters / num_embeddings) | ||
| 14 | if weight_chunk_dim != 0: | ||
| 15 | remainder = num_target_parameters % weight_chunk_dim | ||
| 16 | if remainder > 0: | ||
| 17 | diff = math.ceil(remainder / weight_chunk_dim) | ||
| 18 | num_embeddings += diff | ||
| 19 | return weight_chunk_dim | ||
| 20 | |||
| 21 | |||
| 22 | def count_params(target: ModelMixin): | ||
| 23 | return sum([np.prod(p.size()) for p in target.parameters()]) | ||
| 24 | |||
| 25 | |||
| 26 | class FunctionalParamVectorWrapper(ModelMixin): | ||
| 27 | """ | ||
| 28 | This wraps a module so that it takes params in the forward pass | ||
| 29 | """ | ||
| 30 | |||
| 31 | def __init__(self, module: ModelMixin): | ||
| 32 | super().__init__() | ||
| 33 | |||
| 34 | self.custom_buffers = None | ||
| 35 | param_dict = dict(module.named_parameters()) | ||
| 36 | self.target_weight_shapes = {k: param_dict[k].size() for k in param_dict} | ||
| 37 | |||
| 38 | try: | ||
| 39 | _functional, self.named_params = make_functional(module) | ||
| 40 | except Exception: | ||
| 41 | _functional, self.named_params, buffers = make_functional_with_buffers( | ||
| 42 | module | ||
| 43 | ) | ||
| 44 | self.custom_buffers = buffers | ||
| 45 | self.functional = [_functional] # remove params from being counted | ||
| 46 | |||
| 47 | def forward(self, param_vector: torch.Tensor, *args, **kwargs): | ||
| 48 | params = [] | ||
| 49 | start = 0 | ||
| 50 | for p in self.named_params: | ||
| 51 | end = start + np.prod(p.size()) | ||
| 52 | params.append(param_vector[start:end].view(p.size())) | ||
| 53 | start = end | ||
| 54 | if self.custom_buffers is not None: | ||
| 55 | return self.functional[0](params, self.custom_buffers, *args, **kwargs) | ||
| 56 | return self.functional[0](params, *args, **kwargs) | ||
| 57 | |||
| 58 | |||
| 59 | class Hypernetwork(ModelMixin, ConfigMixin): | ||
| 60 | @register_to_config | ||
| 61 | def __init__( | ||
| 62 | self, | ||
| 63 | target_network: ModelMixin, | ||
| 64 | num_target_parameters: Optional[int] = None, | ||
| 65 | embedding_dim: int = 100, | ||
| 66 | num_embeddings: int = 3, | ||
| 67 | weight_chunk_dim: Optional[int] = None, | ||
| 68 | ): | ||
| 69 | super().__init__() | ||
| 70 | |||
| 71 | self._target = FunctionalParamVectorWrapper(target_network) | ||
| 72 | |||
| 73 | self.target_weight_shapes = self._target.target_weight_shapes | ||
| 74 | |||
| 75 | self.num_target_parameters = num_target_parameters | ||
| 76 | |||
| 77 | self.embedding_dim = embedding_dim | ||
| 78 | self.num_embeddings = num_embeddings | ||
| 79 | self.weight_chunk_dim = weight_chunk_dim | ||
| 80 | |||
| 81 | self.embedding_module = self.make_embedding_module() | ||
| 82 | self.weight_generator = self.make_weight_generator() | ||
| 83 | |||
| 84 | def make_embedding_module(self) -> nn.Module: | ||
| 85 | return nn.Embedding(self.num_embeddings, self.embedding_dim) | ||
| 86 | |||
| 87 | def make_weight_generator(self) -> nn.Module: | ||
| 88 | return nn.Linear(self.embedding_dim, self.weight_chunk_dim) | ||
| 89 | |||
| 90 | def generate_params( | ||
| 91 | self, inp: Iterable[Any] = [] | ||
| 92 | ) -> Tuple[torch.Tensor, Dict[str, Any]]: | ||
| 93 | embedding = self.embedding_module( | ||
| 94 | torch.arange(self.num_embeddings, device=self.device) | ||
| 95 | ) | ||
| 96 | generated_params = self.weight_generator(embedding).view(-1) | ||
| 97 | return generated_params, {"embedding": embedding} | ||
| 98 | |||
| 99 | def forward( | ||
| 100 | self, | ||
| 101 | inp: Iterable[Any] = [], | ||
| 102 | *args, | ||
| 103 | **kwargs, | ||
| 104 | ): | ||
| 105 | generated_params, aux_output = self.generate_params(inp, *args, **kwargs) | ||
| 106 | |||
| 107 | assert generated_params.shape[-1] >= self.num_target_parameters | ||
| 108 | |||
| 109 | return self._target(generated_params, *inp) | ||
| 110 | |||
| 111 | @property | ||
| 112 | def device(self) -> torch.device: | ||
| 113 | return self._target.device | ||
| 114 | |||
| 115 | @classmethod | ||
| 116 | def from_target( | ||
| 117 | cls, | ||
| 118 | target_network: ModelMixin, | ||
| 119 | num_target_parameters: Optional[int] = None, | ||
| 120 | embedding_dim: int = 8, | ||
| 121 | num_embeddings: int = 3, | ||
| 122 | weight_chunk_dim: Optional[int] = None, | ||
| 123 | *args, | ||
| 124 | **kwargs, | ||
| 125 | ): | ||
| 126 | if num_target_parameters is None: | ||
| 127 | num_target_parameters = count_params(target_network) | ||
| 128 | if weight_chunk_dim is None: | ||
| 129 | weight_chunk_dim = get_weight_chunk_dims(num_target_parameters, num_embeddings) | ||
| 130 | return cls( | ||
| 131 | target_network=target_network, | ||
| 132 | num_target_parameters=num_target_parameters, | ||
| 133 | embedding_dim=embedding_dim, | ||
| 134 | num_embeddings=num_embeddings, | ||
| 135 | weight_chunk_dim=weight_chunk_dim, | ||
| 136 | *args, | ||
| 137 | **kwargs, | ||
| 138 | ) | ||
