diff options
| -rw-r--r-- | models/clip/embeddings.py | 6 | ||||
| -rw-r--r-- | train_dreambooth.py | 272 | ||||
| -rw-r--r-- | train_ti.py | 475 | ||||
| -rw-r--r-- | training/common.py | 260 | ||||
| -rw-r--r-- | training/lr.py | 14 | ||||
| -rw-r--r-- | training/modules/dreambooth.py | 0 | ||||
| -rw-r--r-- | training/modules/lora.py | 0 | ||||
| -rw-r--r-- | training/modules/ti.py | 284 | ||||
| -rw-r--r-- | training/util.py | 15 |
9 files changed, 675 insertions, 651 deletions
diff --git a/models/clip/embeddings.py b/models/clip/embeddings.py index 761efbc..9a23a2a 100644 --- a/models/clip/embeddings.py +++ b/models/clip/embeddings.py | |||
| @@ -40,8 +40,6 @@ class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings): | |||
| 40 | self.position_embedding = embeddings.position_embedding | 40 | self.position_embedding = embeddings.position_embedding |
| 41 | self.initializer_factor = config.initializer_factor | 41 | self.initializer_factor = config.initializer_factor |
| 42 | 42 | ||
| 43 | self.decay_target = self.token_embedding.weight[:, :].norm(dim=-1, keepdim=True).median().item() | ||
| 44 | |||
| 45 | self.temp_token_embedding = nn.Embedding( | 43 | self.temp_token_embedding = nn.Embedding( |
| 46 | self.token_embedding.num_embeddings, | 44 | self.token_embedding.num_embeddings, |
| 47 | self.token_embedding.embedding_dim, | 45 | self.token_embedding.embedding_dim, |
| @@ -101,9 +99,7 @@ class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings): | |||
| 101 | 99 | ||
| 102 | return embeds | 100 | return embeds |
| 103 | 101 | ||
| 104 | def normalize(self, target: Optional[float] = None, lambda_: float = 1.0): | 102 | def normalize(self, target: float = 0.4, lambda_: float = 1.0): |
| 105 | if target is None: | ||
| 106 | target = self.decay_target | ||
| 107 | w = self.temp_token_embedding.weight | 103 | w = self.temp_token_embedding.weight |
| 108 | pre_norm = w[self.temp_token_ids, :].norm(dim=-1, keepdim=True) | 104 | pre_norm = w[self.temp_token_ids, :].norm(dim=-1, keepdim=True) |
| 109 | w[self.temp_token_ids] = F.normalize( | 105 | w[self.temp_token_ids] = F.normalize( |
diff --git a/train_dreambooth.py b/train_dreambooth.py index fbbe6c2..c892ebf 100644 --- a/train_dreambooth.py +++ b/train_dreambooth.py | |||
| @@ -1,6 +1,5 @@ | |||
| 1 | import argparse | 1 | import argparse |
| 2 | import itertools | 2 | import itertools |
| 3 | import math | ||
| 4 | import datetime | 3 | import datetime |
| 5 | import logging | 4 | import logging |
| 6 | from pathlib import Path | 5 | from pathlib import Path |
| @@ -16,16 +15,15 @@ from accelerate.utils import LoggerType, set_seed | |||
| 16 | from diffusers import AutoencoderKL, DDPMScheduler, DPMSolverMultistepScheduler, UNet2DConditionModel | 15 | from diffusers import AutoencoderKL, DDPMScheduler, DPMSolverMultistepScheduler, UNet2DConditionModel |
| 17 | import matplotlib.pyplot as plt | 16 | import matplotlib.pyplot as plt |
| 18 | from diffusers.training_utils import EMAModel | 17 | from diffusers.training_utils import EMAModel |
| 19 | from tqdm.auto import tqdm | ||
| 20 | from transformers import CLIPTextModel | 18 | from transformers import CLIPTextModel |
| 21 | from slugify import slugify | 19 | from slugify import slugify |
| 22 | 20 | ||
| 23 | from util import load_config, load_embeddings_from_dir | 21 | from util import load_config, load_embeddings_from_dir |
| 24 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | 22 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion |
| 25 | from data.csv import VlpnDataModule, VlpnDataItem | 23 | from data.csv import VlpnDataModule, VlpnDataItem |
| 26 | from training.common import loss_step, generate_class_images, get_scheduler | 24 | from training.common import loss_step, train_loop, generate_class_images, get_scheduler |
| 27 | from training.lr import LRFinder | 25 | from training.lr import LRFinder |
| 28 | from training.util import AverageMeter, CheckpointerBase, save_args | 26 | from training.util import CheckpointerBase, save_args |
| 29 | from models.clip.embeddings import patch_managed_embeddings | 27 | from models.clip.embeddings import patch_managed_embeddings |
| 30 | from models.clip.tokenizer import MultiCLIPTokenizer | 28 | from models.clip.tokenizer import MultiCLIPTokenizer |
| 31 | 29 | ||
| @@ -292,7 +290,7 @@ def parse_args(): | |||
| 292 | parser.add_argument( | 290 | parser.add_argument( |
| 293 | "--lr_min_lr", | 291 | "--lr_min_lr", |
| 294 | type=float, | 292 | type=float, |
| 295 | default=None, | 293 | default=0.04, |
| 296 | help="Minimum learning rate in the lr scheduler." | 294 | help="Minimum learning rate in the lr scheduler." |
| 297 | ) | 295 | ) |
| 298 | parser.add_argument( | 296 | parser.add_argument( |
| @@ -787,14 +785,6 @@ def main(): | |||
| 787 | args.sample_steps | 785 | args.sample_steps |
| 788 | ) | 786 | ) |
| 789 | 787 | ||
| 790 | # Scheduler and math around the number of training steps. | ||
| 791 | overrode_max_train_steps = False | ||
| 792 | num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | ||
| 793 | if args.max_train_steps is None: | ||
| 794 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | ||
| 795 | overrode_max_train_steps = True | ||
| 796 | num_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | ||
| 797 | |||
| 798 | if args.find_lr: | 788 | if args.find_lr: |
| 799 | lr_scheduler = None | 789 | lr_scheduler = None |
| 800 | else: | 790 | else: |
| @@ -802,15 +792,14 @@ def main(): | |||
| 802 | args.lr_scheduler, | 792 | args.lr_scheduler, |
| 803 | optimizer=optimizer, | 793 | optimizer=optimizer, |
| 804 | min_lr=args.lr_min_lr, | 794 | min_lr=args.lr_min_lr, |
| 805 | lr=args.learning_rate, | ||
| 806 | warmup_func=args.lr_warmup_func, | 795 | warmup_func=args.lr_warmup_func, |
| 807 | annealing_func=args.lr_annealing_func, | 796 | annealing_func=args.lr_annealing_func, |
| 808 | warmup_exp=args.lr_warmup_exp, | 797 | warmup_exp=args.lr_warmup_exp, |
| 809 | annealing_exp=args.lr_annealing_exp, | 798 | annealing_exp=args.lr_annealing_exp, |
| 810 | cycles=args.lr_cycles, | 799 | cycles=args.lr_cycles, |
| 800 | train_epochs=args.num_train_epochs, | ||
| 811 | warmup_epochs=args.lr_warmup_epochs, | 801 | warmup_epochs=args.lr_warmup_epochs, |
| 812 | max_train_steps=args.max_train_steps, | 802 | num_training_steps_per_epoch=len(train_dataloader), |
| 813 | num_update_steps_per_epoch=num_update_steps_per_epoch, | ||
| 814 | gradient_accumulation_steps=args.gradient_accumulation_steps | 803 | gradient_accumulation_steps=args.gradient_accumulation_steps |
| 815 | ) | 804 | ) |
| 816 | 805 | ||
| @@ -827,19 +816,16 @@ def main(): | |||
| 827 | if args.use_ema: | 816 | if args.use_ema: |
| 828 | ema_unet.to(accelerator.device) | 817 | ema_unet.to(accelerator.device) |
| 829 | 818 | ||
| 830 | # We need to recalculate our total training steps as the size of the training dataloader may have changed. | ||
| 831 | num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | ||
| 832 | if overrode_max_train_steps: | ||
| 833 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | ||
| 834 | |||
| 835 | num_val_steps_per_epoch = len(val_dataloader) | ||
| 836 | num_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | ||
| 837 | val_steps = num_val_steps_per_epoch * num_epochs | ||
| 838 | |||
| 839 | @contextmanager | 819 | @contextmanager |
| 840 | def on_train(): | 820 | def on_train(epoch: int): |
| 841 | try: | 821 | try: |
| 842 | tokenizer.train() | 822 | tokenizer.train() |
| 823 | |||
| 824 | if epoch < args.train_text_encoder_epochs: | ||
| 825 | text_encoder.train() | ||
| 826 | elif epoch == args.train_text_encoder_epochs: | ||
| 827 | text_encoder.requires_grad_(False) | ||
| 828 | |||
| 843 | yield | 829 | yield |
| 844 | finally: | 830 | finally: |
| 845 | pass | 831 | pass |
| @@ -848,6 +834,7 @@ def main(): | |||
| 848 | def on_eval(): | 834 | def on_eval(): |
| 849 | try: | 835 | try: |
| 850 | tokenizer.eval() | 836 | tokenizer.eval() |
| 837 | text_encoder.eval() | ||
| 851 | 838 | ||
| 852 | ema_context = ema_unet.apply_temporary(unet.parameters()) if args.use_ema else nullcontext() | 839 | ema_context = ema_unet.apply_temporary(unet.parameters()) if args.use_ema else nullcontext() |
| 853 | 840 | ||
| @@ -856,7 +843,7 @@ def main(): | |||
| 856 | finally: | 843 | finally: |
| 857 | pass | 844 | pass |
| 858 | 845 | ||
| 859 | def on_before_optimize(): | 846 | def on_before_optimize(epoch: int): |
| 860 | if accelerator.sync_gradients: | 847 | if accelerator.sync_gradients: |
| 861 | params_to_clip = [unet.parameters()] | 848 | params_to_clip = [unet.parameters()] |
| 862 | if args.train_text_encoder and epoch < args.train_text_encoder_epochs: | 849 | if args.train_text_encoder and epoch < args.train_text_encoder_epochs: |
| @@ -866,9 +853,17 @@ def main(): | |||
| 866 | @torch.no_grad() | 853 | @torch.no_grad() |
| 867 | def on_after_optimize(lr: float): | 854 | def on_after_optimize(lr: float): |
| 868 | if not args.train_text_encoder: | 855 | if not args.train_text_encoder: |
| 869 | text_encoder.text_model.embeddings.normalize(min(1.0, 100 * lr)) | 856 | text_encoder.text_model.embeddings.normalize( |
| 857 | args.decay_target, | ||
| 858 | min(1.0, max(0.0, args.decay_factor * ((lr - args.decay_start) / (args.learning_rate - args.decay_start)))) | ||
| 859 | ) | ||
| 870 | 860 | ||
| 871 | loop = partial( | 861 | def on_log(): |
| 862 | if args.use_ema: | ||
| 863 | return {"ema_decay": ema_unet.decay} | ||
| 864 | return {} | ||
| 865 | |||
| 866 | loss_step_ = partial( | ||
| 872 | loss_step, | 867 | loss_step, |
| 873 | vae, | 868 | vae, |
| 874 | noise_scheduler, | 869 | noise_scheduler, |
| @@ -879,8 +874,25 @@ def main(): | |||
| 879 | args.seed, | 874 | args.seed, |
| 880 | ) | 875 | ) |
| 881 | 876 | ||
| 882 | # We need to initialize the trackers we use, and also store our configuration. | 877 | checkpointer = Checkpointer( |
| 883 | # The trackers initializes automatically on the main process. | 878 | weight_dtype=weight_dtype, |
| 879 | datamodule=datamodule, | ||
| 880 | accelerator=accelerator, | ||
| 881 | vae=vae, | ||
| 882 | unet=unet, | ||
| 883 | ema_unet=ema_unet, | ||
| 884 | tokenizer=tokenizer, | ||
| 885 | text_encoder=text_encoder, | ||
| 886 | scheduler=checkpoint_scheduler, | ||
| 887 | output_dir=basepath, | ||
| 888 | placeholder_token=args.placeholder_token, | ||
| 889 | placeholder_token_id=placeholder_token_id, | ||
| 890 | sample_image_size=args.sample_image_size, | ||
| 891 | sample_batch_size=args.sample_batch_size, | ||
| 892 | sample_batches=args.sample_batches, | ||
| 893 | seed=args.seed | ||
| 894 | ) | ||
| 895 | |||
| 884 | if accelerator.is_main_process: | 896 | if accelerator.is_main_process: |
| 885 | config = vars(args).copy() | 897 | config = vars(args).copy() |
| 886 | config["initializer_token"] = " ".join(config["initializer_token"]) | 898 | config["initializer_token"] = " ".join(config["initializer_token"]) |
| @@ -898,9 +910,9 @@ def main(): | |||
| 898 | optimizer, | 910 | optimizer, |
| 899 | train_dataloader, | 911 | train_dataloader, |
| 900 | val_dataloader, | 912 | val_dataloader, |
| 901 | loop, | 913 | loss_step_, |
| 902 | on_train=tokenizer.train, | 914 | on_train=on_train, |
| 903 | on_eval=tokenizer.eval, | 915 | on_eval=on_eval, |
| 904 | on_before_optimize=on_before_optimize, | 916 | on_before_optimize=on_before_optimize, |
| 905 | on_after_optimize=on_after_optimize, | 917 | on_after_optimize=on_after_optimize, |
| 906 | ) | 918 | ) |
| @@ -909,182 +921,28 @@ def main(): | |||
| 909 | plt.savefig(basepath.joinpath("lr.png"), dpi=300) | 921 | plt.savefig(basepath.joinpath("lr.png"), dpi=300) |
| 910 | plt.close() | 922 | plt.close() |
| 911 | 923 | ||
| 912 | quit() | 924 | return |
| 913 | |||
| 914 | # Train! | ||
| 915 | total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | ||
| 916 | |||
| 917 | logger.info("***** Running training *****") | ||
| 918 | logger.info(f" Num Epochs = {num_epochs}") | ||
| 919 | logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | ||
| 920 | logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | ||
| 921 | logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | ||
| 922 | logger.info(f" Total optimization steps = {args.max_train_steps}") | ||
| 923 | # Only show the progress bar once on each machine. | ||
| 924 | |||
| 925 | global_step = 0 | ||
| 926 | |||
| 927 | avg_loss = AverageMeter() | ||
| 928 | avg_acc = AverageMeter() | ||
| 929 | 925 | ||
| 930 | avg_loss_val = AverageMeter() | 926 | train_loop( |
| 931 | avg_acc_val = AverageMeter() | ||
| 932 | |||
| 933 | max_acc_val = 0.0 | ||
| 934 | |||
| 935 | checkpointer = Checkpointer( | ||
| 936 | weight_dtype=weight_dtype, | ||
| 937 | datamodule=datamodule, | ||
| 938 | accelerator=accelerator, | 927 | accelerator=accelerator, |
| 939 | vae=vae, | 928 | optimizer=optimizer, |
| 940 | unet=unet, | 929 | lr_scheduler=lr_scheduler, |
| 941 | ema_unet=ema_unet, | 930 | model=unet, |
| 942 | tokenizer=tokenizer, | 931 | checkpointer=checkpointer, |
| 943 | text_encoder=text_encoder, | 932 | train_dataloader=train_dataloader, |
| 944 | scheduler=checkpoint_scheduler, | 933 | val_dataloader=val_dataloader, |
| 945 | output_dir=basepath, | 934 | loss_step=loss_step_, |
| 946 | placeholder_token=args.placeholder_token, | 935 | sample_frequency=args.sample_frequency, |
| 947 | placeholder_token_id=placeholder_token_id, | 936 | sample_steps=args.sample_steps, |
| 948 | sample_image_size=args.sample_image_size, | 937 | checkpoint_frequency=args.checkpoint_frequency, |
| 949 | sample_batch_size=args.sample_batch_size, | 938 | global_step_offset=0, |
| 950 | sample_batches=args.sample_batches, | 939 | gradient_accumulation_steps=args.gradient_accumulation_steps, |
| 951 | seed=args.seed | 940 | num_epochs=args.num_train_epochs, |
| 952 | ) | 941 | on_log=on_log, |
| 953 | 942 | on_train=on_train, | |
| 954 | local_progress_bar = tqdm( | 943 | on_after_optimize=on_after_optimize, |
| 955 | range(num_update_steps_per_epoch + num_val_steps_per_epoch), | 944 | on_eval=on_eval |
| 956 | disable=not accelerator.is_local_main_process, | ||
| 957 | dynamic_ncols=True | ||
| 958 | ) | ||
| 959 | local_progress_bar.set_description(f"Epoch 1 / {num_epochs}") | ||
| 960 | |||
| 961 | global_progress_bar = tqdm( | ||
| 962 | range(args.max_train_steps + val_steps), | ||
| 963 | disable=not accelerator.is_local_main_process, | ||
| 964 | dynamic_ncols=True | ||
| 965 | ) | 945 | ) |
| 966 | global_progress_bar.set_description("Total progress") | ||
| 967 | |||
| 968 | try: | ||
| 969 | for epoch in range(num_epochs): | ||
| 970 | if accelerator.is_main_process: | ||
| 971 | if epoch % args.sample_frequency == 0: | ||
| 972 | checkpointer.save_samples(global_step, args.sample_steps) | ||
| 973 | |||
| 974 | local_progress_bar.set_description(f"Epoch {epoch + 1} / {num_epochs}") | ||
| 975 | local_progress_bar.reset() | ||
| 976 | |||
| 977 | unet.train() | ||
| 978 | if epoch < args.train_text_encoder_epochs: | ||
| 979 | text_encoder.train() | ||
| 980 | elif epoch == args.train_text_encoder_epochs: | ||
| 981 | text_encoder.requires_grad_(False) | ||
| 982 | |||
| 983 | with on_train(): | ||
| 984 | for step, batch in enumerate(train_dataloader): | ||
| 985 | with accelerator.accumulate(unet): | ||
| 986 | loss, acc, bsz = loop(step, batch) | ||
| 987 | |||
| 988 | accelerator.backward(loss) | ||
| 989 | |||
| 990 | on_before_optimize() | ||
| 991 | |||
| 992 | optimizer.step() | ||
| 993 | if not accelerator.optimizer_step_was_skipped: | ||
| 994 | lr_scheduler.step() | ||
| 995 | if args.use_ema: | ||
| 996 | ema_unet.step(unet.parameters()) | ||
| 997 | optimizer.zero_grad(set_to_none=True) | ||
| 998 | |||
| 999 | avg_loss.update(loss.detach_(), bsz) | ||
| 1000 | avg_acc.update(acc.detach_(), bsz) | ||
| 1001 | |||
| 1002 | # Checks if the accelerator has performed an optimization step behind the scenes | ||
| 1003 | if accelerator.sync_gradients: | ||
| 1004 | on_after_optimize(lr_scheduler.get_last_lr()[0]) | ||
| 1005 | |||
| 1006 | local_progress_bar.update(1) | ||
| 1007 | global_progress_bar.update(1) | ||
| 1008 | |||
| 1009 | global_step += 1 | ||
| 1010 | |||
| 1011 | logs = { | ||
| 1012 | "train/loss": avg_loss.avg.item(), | ||
| 1013 | "train/acc": avg_acc.avg.item(), | ||
| 1014 | "train/cur_loss": loss.item(), | ||
| 1015 | "train/cur_acc": acc.item(), | ||
| 1016 | "lr": lr_scheduler.get_last_lr()[0] | ||
| 1017 | } | ||
| 1018 | if args.use_ema: | ||
| 1019 | logs["ema_decay"] = 1 - ema_unet.decay | ||
| 1020 | |||
| 1021 | accelerator.log(logs, step=global_step) | ||
| 1022 | |||
| 1023 | local_progress_bar.set_postfix(**logs) | ||
| 1024 | |||
| 1025 | if global_step >= args.max_train_steps: | ||
| 1026 | break | ||
| 1027 | |||
| 1028 | accelerator.wait_for_everyone() | ||
| 1029 | |||
| 1030 | unet.eval() | ||
| 1031 | text_encoder.eval() | ||
| 1032 | |||
| 1033 | cur_loss_val = AverageMeter() | ||
| 1034 | cur_acc_val = AverageMeter() | ||
| 1035 | |||
| 1036 | with torch.inference_mode(): | ||
| 1037 | with on_eval(): | ||
| 1038 | for step, batch in enumerate(val_dataloader): | ||
| 1039 | loss, acc, bsz = loop(step, batch, True) | ||
| 1040 | |||
| 1041 | loss = loss.detach_() | ||
| 1042 | acc = acc.detach_() | ||
| 1043 | |||
| 1044 | cur_loss_val.update(loss, bsz) | ||
| 1045 | cur_acc_val.update(acc, bsz) | ||
| 1046 | |||
| 1047 | avg_loss_val.update(loss, bsz) | ||
| 1048 | avg_acc_val.update(acc, bsz) | ||
| 1049 | |||
| 1050 | local_progress_bar.update(1) | ||
| 1051 | global_progress_bar.update(1) | ||
| 1052 | |||
| 1053 | logs = { | ||
| 1054 | "val/loss": avg_loss_val.avg.item(), | ||
| 1055 | "val/acc": avg_acc_val.avg.item(), | ||
| 1056 | "val/cur_loss": loss.item(), | ||
| 1057 | "val/cur_acc": acc.item(), | ||
| 1058 | } | ||
| 1059 | local_progress_bar.set_postfix(**logs) | ||
| 1060 | |||
| 1061 | logs["val/cur_loss"] = cur_loss_val.avg.item() | ||
| 1062 | logs["val/cur_acc"] = cur_acc_val.avg.item() | ||
| 1063 | |||
| 1064 | accelerator.log(logs, step=global_step) | ||
| 1065 | |||
| 1066 | local_progress_bar.clear() | ||
| 1067 | global_progress_bar.clear() | ||
| 1068 | |||
| 1069 | if accelerator.is_main_process: | ||
| 1070 | if avg_acc_val.avg.item() > max_acc_val: | ||
| 1071 | accelerator.print( | ||
| 1072 | f"Global step {global_step}: Validation accuracy reached new maximum: {max_acc_val:.2e} -> {avg_acc_val.avg.item():.2e}") | ||
| 1073 | max_acc_val = avg_acc_val.avg.item() | ||
| 1074 | |||
| 1075 | # Create the pipeline using using the trained modules and save it. | ||
| 1076 | if accelerator.is_main_process: | ||
| 1077 | print("Finished! Saving final checkpoint and resume state.") | ||
| 1078 | checkpointer.save_samples(global_step, args.sample_steps) | ||
| 1079 | checkpointer.save_model() | ||
| 1080 | accelerator.end_training() | ||
| 1081 | |||
| 1082 | except KeyboardInterrupt: | ||
| 1083 | if accelerator.is_main_process: | ||
| 1084 | print("Interrupted, saving checkpoint and resume state...") | ||
| 1085 | checkpointer.save_model() | ||
| 1086 | accelerator.end_training() | ||
| 1087 | quit() | ||
| 1088 | 946 | ||
| 1089 | 947 | ||
| 1090 | if __name__ == "__main__": | 948 | if __name__ == "__main__": |
diff --git a/train_ti.py b/train_ti.py index 3f4e739..3a55f40 100644 --- a/train_ti.py +++ b/train_ti.py | |||
| @@ -1,31 +1,15 @@ | |||
| 1 | import argparse | 1 | import argparse |
| 2 | import math | ||
| 3 | import datetime | ||
| 4 | import logging | ||
| 5 | from functools import partial | ||
| 6 | from pathlib import Path | ||
| 7 | from contextlib import contextmanager, nullcontext | ||
| 8 | 2 | ||
| 9 | import torch | 3 | import torch |
| 10 | import torch.utils.checkpoint | 4 | import torch.utils.checkpoint |
| 11 | 5 | ||
| 12 | from accelerate import Accelerator | ||
| 13 | from accelerate.logging import get_logger | 6 | from accelerate.logging import get_logger |
| 14 | from accelerate.utils import LoggerType, set_seed | ||
| 15 | from diffusers import AutoencoderKL, DDPMScheduler, DPMSolverMultistepScheduler, UNet2DConditionModel | ||
| 16 | import matplotlib.pyplot as plt | ||
| 17 | from tqdm.auto import tqdm | ||
| 18 | from transformers import CLIPTextModel | ||
| 19 | from slugify import slugify | ||
| 20 | 7 | ||
| 21 | from util import load_config, load_embeddings_from_dir | 8 | from util import load_config |
| 22 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | 9 | from data.csv import VlpnDataItem |
| 23 | from data.csv import VlpnDataModule, VlpnDataItem | 10 | from training.common import train_setup |
| 24 | from training.common import loss_step, train_loop, generate_class_images, get_scheduler | 11 | from training.modules.ti import train_ti |
| 25 | from training.lr import LRFinder | 12 | from training.util import save_args |
| 26 | from training.util import AverageMeter, CheckpointerBase, EMAModel, save_args | ||
| 27 | from models.clip.embeddings import patch_managed_embeddings | ||
| 28 | from models.clip.tokenizer import MultiCLIPTokenizer | ||
| 29 | 13 | ||
| 30 | logger = get_logger(__name__) | 14 | logger = get_logger(__name__) |
| 31 | 15 | ||
| @@ -271,7 +255,7 @@ def parse_args(): | |||
| 271 | parser.add_argument( | 255 | parser.add_argument( |
| 272 | "--lr_min_lr", | 256 | "--lr_min_lr", |
| 273 | type=float, | 257 | type=float, |
| 274 | default=None, | 258 | default=0.04, |
| 275 | help="Minimum learning rate in the lr scheduler." | 259 | help="Minimum learning rate in the lr scheduler." |
| 276 | ) | 260 | ) |
| 277 | parser.add_argument( | 261 | parser.add_argument( |
| @@ -401,19 +385,19 @@ def parse_args(): | |||
| 401 | help="The weight of prior preservation loss." | 385 | help="The weight of prior preservation loss." |
| 402 | ) | 386 | ) |
| 403 | parser.add_argument( | 387 | parser.add_argument( |
| 404 | "--decay_target", | 388 | "--emb_decay_target", |
| 405 | default=None, | 389 | default=0.4, |
| 406 | type=float, | 390 | type=float, |
| 407 | help="Embedding decay target." | 391 | help="Embedding decay target." |
| 408 | ) | 392 | ) |
| 409 | parser.add_argument( | 393 | parser.add_argument( |
| 410 | "--decay_factor", | 394 | "--emb_decay_factor", |
| 411 | default=1, | 395 | default=1, |
| 412 | type=float, | 396 | type=float, |
| 413 | help="Embedding decay factor." | 397 | help="Embedding decay factor." |
| 414 | ) | 398 | ) |
| 415 | parser.add_argument( | 399 | parser.add_argument( |
| 416 | "--decay_start", | 400 | "--emb_decay_start", |
| 417 | default=1e-4, | 401 | default=1e-4, |
| 418 | type=float, | 402 | type=float, |
| 419 | help="Embedding decay start offset." | 403 | help="Embedding decay start offset." |
| @@ -491,213 +475,10 @@ def parse_args(): | |||
| 491 | return args | 475 | return args |
| 492 | 476 | ||
| 493 | 477 | ||
| 494 | class Checkpointer(CheckpointerBase): | ||
| 495 | def __init__( | ||
| 496 | self, | ||
| 497 | weight_dtype, | ||
| 498 | accelerator: Accelerator, | ||
| 499 | vae: AutoencoderKL, | ||
| 500 | unet: UNet2DConditionModel, | ||
| 501 | tokenizer: MultiCLIPTokenizer, | ||
| 502 | text_encoder: CLIPTextModel, | ||
| 503 | ema_embeddings: EMAModel, | ||
| 504 | scheduler, | ||
| 505 | placeholder_token, | ||
| 506 | new_ids, | ||
| 507 | *args, | ||
| 508 | **kwargs | ||
| 509 | ): | ||
| 510 | super().__init__(*args, **kwargs) | ||
| 511 | |||
| 512 | self.weight_dtype = weight_dtype | ||
| 513 | self.accelerator = accelerator | ||
| 514 | self.vae = vae | ||
| 515 | self.unet = unet | ||
| 516 | self.tokenizer = tokenizer | ||
| 517 | self.text_encoder = text_encoder | ||
| 518 | self.ema_embeddings = ema_embeddings | ||
| 519 | self.scheduler = scheduler | ||
| 520 | self.placeholder_token = placeholder_token | ||
| 521 | self.new_ids = new_ids | ||
| 522 | |||
| 523 | @torch.no_grad() | ||
| 524 | def checkpoint(self, step, postfix): | ||
| 525 | print("Saving checkpoint for step %d..." % step) | ||
| 526 | |||
| 527 | checkpoints_path = self.output_dir.joinpath("checkpoints") | ||
| 528 | checkpoints_path.mkdir(parents=True, exist_ok=True) | ||
| 529 | |||
| 530 | text_encoder = self.accelerator.unwrap_model(self.text_encoder) | ||
| 531 | |||
| 532 | ema_context = self.ema_embeddings.apply_temporary( | ||
| 533 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) if self.ema_embeddings is not None else nullcontext() | ||
| 534 | |||
| 535 | with ema_context: | ||
| 536 | for (token, ids) in zip(self.placeholder_token, self.new_ids): | ||
| 537 | text_encoder.text_model.embeddings.save_embed( | ||
| 538 | ids, | ||
| 539 | checkpoints_path.joinpath(f"{slugify(token)}_{step}_{postfix}.bin") | ||
| 540 | ) | ||
| 541 | |||
| 542 | del text_encoder | ||
| 543 | |||
| 544 | @torch.no_grad() | ||
| 545 | def save_samples(self, step, num_inference_steps, guidance_scale=7.5, eta=0.0): | ||
| 546 | text_encoder = self.accelerator.unwrap_model(self.text_encoder) | ||
| 547 | |||
| 548 | ema_context = self.ema_embeddings.apply_temporary( | ||
| 549 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) if self.ema_embeddings is not None else nullcontext() | ||
| 550 | |||
| 551 | with ema_context: | ||
| 552 | orig_dtype = text_encoder.dtype | ||
| 553 | text_encoder.to(dtype=self.weight_dtype) | ||
| 554 | |||
| 555 | pipeline = VlpnStableDiffusion( | ||
| 556 | text_encoder=text_encoder, | ||
| 557 | vae=self.vae, | ||
| 558 | unet=self.unet, | ||
| 559 | tokenizer=self.tokenizer, | ||
| 560 | scheduler=self.scheduler, | ||
| 561 | ).to(self.accelerator.device) | ||
| 562 | pipeline.set_progress_bar_config(dynamic_ncols=True) | ||
| 563 | |||
| 564 | super().save_samples(pipeline, step, num_inference_steps, guidance_scale, eta) | ||
| 565 | |||
| 566 | text_encoder.to(dtype=orig_dtype) | ||
| 567 | |||
| 568 | del text_encoder | ||
| 569 | del pipeline | ||
| 570 | |||
| 571 | if torch.cuda.is_available(): | ||
| 572 | torch.cuda.empty_cache() | ||
| 573 | |||
| 574 | |||
| 575 | def main(): | 478 | def main(): |
| 576 | args = parse_args() | 479 | args = parse_args() |
| 577 | 480 | ||
| 578 | global_step_offset = args.global_step | 481 | def data_filter(item: VlpnDataItem): |
| 579 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | ||
| 580 | basepath = Path(args.output_dir).joinpath(slugify(args.project), now) | ||
| 581 | basepath.mkdir(parents=True, exist_ok=True) | ||
| 582 | |||
| 583 | accelerator = Accelerator( | ||
| 584 | log_with=LoggerType.TENSORBOARD, | ||
| 585 | logging_dir=f"{basepath}", | ||
| 586 | gradient_accumulation_steps=args.gradient_accumulation_steps, | ||
| 587 | mixed_precision=args.mixed_precision | ||
| 588 | ) | ||
| 589 | |||
| 590 | logging.basicConfig(filename=basepath.joinpath("log.txt"), level=logging.DEBUG) | ||
| 591 | |||
| 592 | args.seed = args.seed or (torch.random.seed() >> 32) | ||
| 593 | set_seed(args.seed) | ||
| 594 | |||
| 595 | save_args(basepath, args) | ||
| 596 | |||
| 597 | # Load the tokenizer and add the placeholder token as a additional special token | ||
| 598 | if args.tokenizer_name: | ||
| 599 | tokenizer = MultiCLIPTokenizer.from_pretrained(args.tokenizer_name) | ||
| 600 | elif args.pretrained_model_name_or_path: | ||
| 601 | tokenizer = MultiCLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') | ||
| 602 | tokenizer.set_use_vector_shuffle(args.vector_shuffle) | ||
| 603 | tokenizer.set_dropout(args.vector_dropout) | ||
| 604 | |||
| 605 | # Load models and create wrapper for stable diffusion | ||
| 606 | text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') | ||
| 607 | vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') | ||
| 608 | unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') | ||
| 609 | noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder='scheduler') | ||
| 610 | checkpoint_scheduler = DPMSolverMultistepScheduler.from_pretrained( | ||
| 611 | args.pretrained_model_name_or_path, subfolder='scheduler') | ||
| 612 | |||
| 613 | vae.enable_slicing() | ||
| 614 | vae.set_use_memory_efficient_attention_xformers(True) | ||
| 615 | unet.set_use_memory_efficient_attention_xformers(True) | ||
| 616 | |||
| 617 | if args.gradient_checkpointing: | ||
| 618 | unet.enable_gradient_checkpointing() | ||
| 619 | text_encoder.gradient_checkpointing_enable() | ||
| 620 | |||
| 621 | embeddings = patch_managed_embeddings(text_encoder) | ||
| 622 | ema_embeddings = None | ||
| 623 | |||
| 624 | if args.embeddings_dir is not None: | ||
| 625 | embeddings_dir = Path(args.embeddings_dir) | ||
| 626 | if not embeddings_dir.exists() or not embeddings_dir.is_dir(): | ||
| 627 | raise ValueError("--embeddings_dir must point to an existing directory") | ||
| 628 | |||
| 629 | added_tokens, added_ids = load_embeddings_from_dir(tokenizer, embeddings, embeddings_dir) | ||
| 630 | print(f"Added {len(added_tokens)} tokens from embeddings dir: {list(zip(added_tokens, added_ids))}") | ||
| 631 | |||
| 632 | # Convert the initializer_token, placeholder_token to ids | ||
| 633 | initializer_token_ids = [ | ||
| 634 | tokenizer.encode(token, add_special_tokens=False) | ||
| 635 | for token in args.initializer_token | ||
| 636 | ] | ||
| 637 | |||
| 638 | new_ids = tokenizer.add_multi_tokens(args.placeholder_token, args.num_vectors) | ||
| 639 | embeddings.resize(len(tokenizer)) | ||
| 640 | |||
| 641 | for (new_id, init_ids) in zip(new_ids, initializer_token_ids): | ||
| 642 | embeddings.add_embed(new_id, init_ids) | ||
| 643 | |||
| 644 | init_ratios = [f"{len(init_ids)} / {len(new_id)}" for new_id, init_ids in zip(new_ids, initializer_token_ids)] | ||
| 645 | |||
| 646 | print(f"Added {len(new_ids)} new tokens: {list(zip(args.placeholder_token, new_ids, init_ratios))}") | ||
| 647 | |||
| 648 | if args.use_ema: | ||
| 649 | ema_embeddings = EMAModel( | ||
| 650 | text_encoder.text_model.embeddings.temp_token_embedding.parameters(), | ||
| 651 | inv_gamma=args.ema_inv_gamma, | ||
| 652 | power=args.ema_power, | ||
| 653 | max_value=args.ema_max_decay, | ||
| 654 | ) | ||
| 655 | |||
| 656 | vae.requires_grad_(False) | ||
| 657 | unet.requires_grad_(False) | ||
| 658 | |||
| 659 | text_encoder.text_model.encoder.requires_grad_(False) | ||
| 660 | text_encoder.text_model.final_layer_norm.requires_grad_(False) | ||
| 661 | text_encoder.text_model.embeddings.position_embedding.requires_grad_(False) | ||
| 662 | text_encoder.text_model.embeddings.token_embedding.requires_grad_(False) | ||
| 663 | |||
| 664 | if args.scale_lr: | ||
| 665 | args.learning_rate = ( | ||
| 666 | args.learning_rate * args.gradient_accumulation_steps * | ||
| 667 | args.train_batch_size * accelerator.num_processes | ||
| 668 | ) | ||
| 669 | |||
| 670 | if args.find_lr: | ||
| 671 | args.learning_rate = 1e-5 | ||
| 672 | |||
| 673 | # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | ||
| 674 | if args.use_8bit_adam: | ||
| 675 | try: | ||
| 676 | import bitsandbytes as bnb | ||
| 677 | except ImportError: | ||
| 678 | raise ImportError("To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`.") | ||
| 679 | |||
| 680 | optimizer_class = bnb.optim.AdamW8bit | ||
| 681 | else: | ||
| 682 | optimizer_class = torch.optim.AdamW | ||
| 683 | |||
| 684 | # Initialize the optimizer | ||
| 685 | optimizer = optimizer_class( | ||
| 686 | text_encoder.text_model.embeddings.temp_token_embedding.parameters(), # only optimize the embeddings | ||
| 687 | lr=args.learning_rate, | ||
| 688 | betas=(args.adam_beta1, args.adam_beta2), | ||
| 689 | weight_decay=args.adam_weight_decay, | ||
| 690 | eps=args.adam_epsilon, | ||
| 691 | amsgrad=args.adam_amsgrad, | ||
| 692 | ) | ||
| 693 | |||
| 694 | weight_dtype = torch.float32 | ||
| 695 | if args.mixed_precision == "fp16": | ||
| 696 | weight_dtype = torch.float16 | ||
| 697 | elif args.mixed_precision == "bf16": | ||
| 698 | weight_dtype = torch.bfloat16 | ||
| 699 | |||
| 700 | def keyword_filter(item: VlpnDataItem): | ||
| 701 | cond1 = any( | 482 | cond1 = any( |
| 702 | keyword in part | 483 | keyword in part |
| 703 | for keyword in args.placeholder_token | 484 | for keyword in args.placeholder_token |
| @@ -710,199 +491,79 @@ def main(): | |||
| 710 | ) | 491 | ) |
| 711 | return cond1 and cond3 and cond4 | 492 | return cond1 and cond3 and cond4 |
| 712 | 493 | ||
| 713 | datamodule = VlpnDataModule( | 494 | setup = train_setup( |
| 495 | output_dir=args.output_dir, | ||
| 496 | project=args.project, | ||
| 497 | pretrained_model_name_or_path=args.pretrained_model_name_or_path, | ||
| 498 | learning_rate=args.learning_rate, | ||
| 714 | data_file=args.train_data_file, | 499 | data_file=args.train_data_file, |
| 715 | batch_size=args.train_batch_size, | 500 | gradient_accumulation_steps=args.gradient_accumulation_steps, |
| 716 | tokenizer=tokenizer, | 501 | mixed_precision=args.mixed_precision, |
| 717 | class_subdir=args.class_image_dir, | 502 | seed=args.seed, |
| 503 | vector_shuffle=args.vector_shuffle, | ||
| 504 | vector_dropout=args.vector_dropout, | ||
| 505 | gradient_checkpointing=args.gradient_checkpointing, | ||
| 506 | embeddings_dir=args.embeddings_dir, | ||
| 507 | placeholder_token=args.placeholder_token, | ||
| 508 | initializer_token=args.initializer_token, | ||
| 509 | num_vectors=args.num_vectors, | ||
| 510 | scale_lr=args.scale_lr, | ||
| 511 | use_8bit_adam=args.use_8bit_adam, | ||
| 512 | train_batch_size=args.train_batch_size, | ||
| 513 | class_image_dir=args.class_image_dir, | ||
| 718 | num_class_images=args.num_class_images, | 514 | num_class_images=args.num_class_images, |
| 719 | size=args.resolution, | 515 | resolution=args.resolution, |
| 720 | num_buckets=args.num_buckets, | 516 | num_buckets=args.num_buckets, |
| 721 | progressive_buckets=args.progressive_buckets, | 517 | progressive_buckets=args.progressive_buckets, |
| 722 | bucket_step_size=args.bucket_step_size, | 518 | bucket_step_size=args.bucket_step_size, |
| 723 | bucket_max_pixels=args.bucket_max_pixels, | 519 | bucket_max_pixels=args.bucket_max_pixels, |
| 724 | dropout=args.tag_dropout, | 520 | tag_dropout=args.tag_dropout, |
| 725 | shuffle=not args.no_tag_shuffle, | 521 | tag_shuffle=not args.no_tag_shuffle, |
| 726 | template_key=args.train_data_template, | 522 | data_template=args.train_data_template, |
| 727 | valid_set_size=args.valid_set_size, | 523 | valid_set_size=args.valid_set_size, |
| 728 | valid_set_repeat=args.valid_set_repeat, | 524 | valid_set_repeat=args.valid_set_repeat, |
| 729 | num_workers=args.dataloader_num_workers, | 525 | data_filter=data_filter, |
| 730 | seed=args.seed, | 526 | sample_image_size=args.sample_image_size, |
| 731 | filter=keyword_filter, | 527 | sample_batch_size=args.sample_batch_size, |
| 732 | dtype=weight_dtype | 528 | sample_steps=args.sample_steps, |
| 733 | ) | ||
| 734 | datamodule.setup() | ||
| 735 | |||
| 736 | train_dataloader = datamodule.train_dataloader | ||
| 737 | val_dataloader = datamodule.val_dataloader | ||
| 738 | |||
| 739 | if args.num_class_images != 0: | ||
| 740 | generate_class_images( | ||
| 741 | accelerator, | ||
| 742 | text_encoder, | ||
| 743 | vae, | ||
| 744 | unet, | ||
| 745 | tokenizer, | ||
| 746 | checkpoint_scheduler, | ||
| 747 | datamodule.data_train, | ||
| 748 | args.sample_batch_size, | ||
| 749 | args.sample_image_size, | ||
| 750 | args.sample_steps | ||
| 751 | ) | ||
| 752 | |||
| 753 | if args.find_lr: | ||
| 754 | lr_scheduler = None | ||
| 755 | else: | ||
| 756 | lr_scheduler = get_scheduler( | ||
| 757 | args.lr_scheduler, | ||
| 758 | optimizer=optimizer, | ||
| 759 | min_lr=args.lr_min_lr, | ||
| 760 | lr=args.learning_rate, | ||
| 761 | warmup_func=args.lr_warmup_func, | ||
| 762 | annealing_func=args.lr_annealing_func, | ||
| 763 | warmup_exp=args.lr_warmup_exp, | ||
| 764 | annealing_exp=args.lr_annealing_exp, | ||
| 765 | cycles=args.lr_cycles, | ||
| 766 | train_epochs=args.num_train_epochs, | ||
| 767 | warmup_epochs=args.lr_warmup_epochs, | ||
| 768 | num_training_steps_per_epoch=len(train_dataloader), | ||
| 769 | gradient_accumulation_steps=args.gradient_accumulation_steps | ||
| 770 | ) | ||
| 771 | |||
| 772 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( | ||
| 773 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler | ||
| 774 | ) | 529 | ) |
| 775 | 530 | ||
| 776 | # Move vae and unet to device | 531 | save_args(setup.output_dir, args) |
| 777 | vae.to(accelerator.device, dtype=weight_dtype) | ||
| 778 | unet.to(accelerator.device, dtype=weight_dtype) | ||
| 779 | 532 | ||
| 780 | if args.use_ema: | 533 | train_ti( |
| 781 | ema_embeddings.to(accelerator.device) | 534 | setup=setup, |
| 782 | 535 | num_train_epochs=args.num_train_epochs, | |
| 783 | # Keep vae and unet in eval mode as we don't train these | 536 | num_class_images=args.num_class_images, |
| 784 | vae.eval() | 537 | prior_loss_weight=args.prior_loss_weight, |
| 785 | 538 | use_ema=args.use_ema, | |
| 786 | if args.gradient_checkpointing: | 539 | ema_inv_gamma=args.ema_inv_gamma, |
| 787 | unet.train() | 540 | ema_power=args.ema_power, |
| 788 | else: | 541 | ema_max_decay=args.ema_max_decay, |
| 789 | unet.eval() | 542 | adam_beta1=args.adam_beta1, |
| 790 | 543 | adam_beta2=args.adam_beta2, | |
| 791 | @contextmanager | 544 | adam_weight_decay=args.adam_weight_decay, |
| 792 | def on_train(): | 545 | adam_epsilon=args.adam_epsilon, |
| 793 | try: | 546 | adam_amsgrad=args.adam_amsgrad, |
| 794 | tokenizer.train() | 547 | lr_scheduler=args.lr_scheduler, |
| 795 | yield | 548 | lr_min_lr=args.lr_min_lr, |
| 796 | finally: | 549 | lr_warmup_func=args.lr_warmup_func, |
| 797 | pass | 550 | lr_annealing_func=args.lr_annealing_func, |
| 798 | 551 | lr_warmup_exp=args.lr_warmup_exp, | |
| 799 | @contextmanager | 552 | lr_annealing_exp=args.lr_annealing_exp, |
| 800 | def on_eval(): | 553 | lr_cycles=args.lr_cycles, |
| 801 | try: | 554 | lr_warmup_epochs=args.lr_warmup_epochs, |
| 802 | tokenizer.eval() | 555 | emb_decay_target=args.emb_decay_target, |
| 803 | 556 | emb_decay_factor=args.emb_decay_factor, | |
| 804 | ema_context = ema_embeddings.apply_temporary( | 557 | emb_decay_start=args.emb_decay_start, |
| 805 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) if args.use_ema else nullcontext() | ||
| 806 | |||
| 807 | with ema_context: | ||
| 808 | yield | ||
| 809 | finally: | ||
| 810 | pass | ||
| 811 | |||
| 812 | @torch.no_grad() | ||
| 813 | def on_after_optimize(lr: float): | ||
| 814 | text_encoder.text_model.embeddings.normalize( | ||
| 815 | args.decay_target, | ||
| 816 | min(1.0, max(0.0, args.decay_factor * ((lr - args.decay_start) / (args.learning_rate - args.decay_start)))) | ||
| 817 | ) | ||
| 818 | |||
| 819 | if args.use_ema: | ||
| 820 | ema_embeddings.step(text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
| 821 | |||
| 822 | def on_log(): | ||
| 823 | if args.use_ema: | ||
| 824 | return {"ema_decay": ema_embeddings.decay} | ||
| 825 | return {} | ||
| 826 | |||
| 827 | loss_step_ = partial( | ||
| 828 | loss_step, | ||
| 829 | vae, | ||
| 830 | noise_scheduler, | ||
| 831 | unet, | ||
| 832 | text_encoder, | ||
| 833 | args.num_class_images != 0, | ||
| 834 | args.prior_loss_weight, | ||
| 835 | args.seed, | ||
| 836 | ) | ||
| 837 | |||
| 838 | checkpointer = Checkpointer( | ||
| 839 | weight_dtype=weight_dtype, | ||
| 840 | datamodule=datamodule, | ||
| 841 | accelerator=accelerator, | ||
| 842 | vae=vae, | ||
| 843 | unet=unet, | ||
| 844 | tokenizer=tokenizer, | ||
| 845 | text_encoder=text_encoder, | ||
| 846 | ema_embeddings=ema_embeddings, | ||
| 847 | scheduler=checkpoint_scheduler, | ||
| 848 | placeholder_token=args.placeholder_token, | ||
| 849 | new_ids=new_ids, | ||
| 850 | output_dir=basepath, | ||
| 851 | sample_image_size=args.sample_image_size, | 558 | sample_image_size=args.sample_image_size, |
| 852 | sample_batch_size=args.sample_batch_size, | 559 | sample_batch_size=args.sample_batch_size, |
| 853 | sample_batches=args.sample_batches, | 560 | sample_batches=args.sample_batches, |
| 854 | seed=args.seed | 561 | sample_frequency=args.sample_frequency, |
| 562 | sample_steps=args.sample_steps, | ||
| 563 | checkpoint_frequency=args.checkpoint_frequency, | ||
| 564 | global_step_offset=args.global_step, | ||
| 855 | ) | 565 | ) |
| 856 | 566 | ||
| 857 | if accelerator.is_main_process: | ||
| 858 | config = vars(args).copy() | ||
| 859 | config["initializer_token"] = " ".join(config["initializer_token"]) | ||
| 860 | config["placeholder_token"] = " ".join(config["placeholder_token"]) | ||
| 861 | config["num_vectors"] = " ".join([str(n) for n in config["num_vectors"]]) | ||
| 862 | if config["collection"] is not None: | ||
| 863 | config["collection"] = " ".join(config["collection"]) | ||
| 864 | if config["exclude_collections"] is not None: | ||
| 865 | config["exclude_collections"] = " ".join(config["exclude_collections"]) | ||
| 866 | accelerator.init_trackers("textual_inversion", config=config) | ||
| 867 | |||
| 868 | if args.find_lr: | ||
| 869 | lr_finder = LRFinder( | ||
| 870 | accelerator=accelerator, | ||
| 871 | optimizer=optimizer, | ||
| 872 | model=text_encoder, | ||
| 873 | train_dataloader=train_dataloader, | ||
| 874 | val_dataloader=val_dataloader, | ||
| 875 | loss_step=loss_step_, | ||
| 876 | on_train=on_train, | ||
| 877 | on_eval=on_eval, | ||
| 878 | on_after_optimize=on_after_optimize, | ||
| 879 | ) | ||
| 880 | lr_finder.run(num_epochs=100, end_lr=1e3) | ||
| 881 | |||
| 882 | plt.savefig(basepath.joinpath("lr.png"), dpi=300) | ||
| 883 | plt.close() | ||
| 884 | else: | ||
| 885 | train_loop( | ||
| 886 | accelerator=accelerator, | ||
| 887 | optimizer=optimizer, | ||
| 888 | lr_scheduler=lr_scheduler, | ||
| 889 | model=text_encoder, | ||
| 890 | checkpointer=checkpointer, | ||
| 891 | train_dataloader=train_dataloader, | ||
| 892 | val_dataloader=val_dataloader, | ||
| 893 | loss_step=loss_step_, | ||
| 894 | sample_frequency=args.sample_frequency, | ||
| 895 | sample_steps=args.sample_steps, | ||
| 896 | checkpoint_frequency=args.checkpoint_frequency, | ||
| 897 | global_step_offset=global_step_offset, | ||
| 898 | gradient_accumulation_steps=args.gradient_accumulation_steps, | ||
| 899 | num_epochs=args.num_train_epochs, | ||
| 900 | on_log=on_log, | ||
| 901 | on_train=on_train, | ||
| 902 | on_after_optimize=on_after_optimize, | ||
| 903 | on_eval=on_eval | ||
| 904 | ) | ||
| 905 | |||
| 906 | 567 | ||
| 907 | if __name__ == "__main__": | 568 | if __name__ == "__main__": |
| 908 | main() | 569 | main() |
diff --git a/training/common.py b/training/common.py index 180396e..73ce814 100644 --- a/training/common.py +++ b/training/common.py | |||
| @@ -1,46 +1,77 @@ | |||
| 1 | import math | 1 | import math |
| 2 | from pathlib import Path | ||
| 2 | from contextlib import _GeneratorContextManager, nullcontext | 3 | from contextlib import _GeneratorContextManager, nullcontext |
| 3 | from typing import Callable, Any, Tuple, Union | 4 | from typing import Callable, Any, Tuple, Union, Literal, Optional, NamedTuple |
| 5 | import datetime | ||
| 6 | import logging | ||
| 4 | 7 | ||
| 5 | import torch | 8 | import torch |
| 6 | import torch.nn.functional as F | 9 | import torch.nn.functional as F |
| 7 | from torch.utils.data import DataLoader | 10 | from torch.utils.data import DataLoader |
| 8 | 11 | ||
| 9 | from accelerate import Accelerator | 12 | from accelerate import Accelerator |
| 10 | from transformers import CLIPTokenizer, CLIPTextModel | 13 | from accelerate.utils import LoggerType, set_seed |
| 11 | from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel | 14 | from transformers import CLIPTextModel |
| 15 | from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel, DPMSolverMultistepScheduler | ||
| 12 | from diffusers.optimization import get_scheduler as get_scheduler_, get_cosine_with_hard_restarts_schedule_with_warmup | 16 | from diffusers.optimization import get_scheduler as get_scheduler_, get_cosine_with_hard_restarts_schedule_with_warmup |
| 13 | 17 | ||
| 14 | from tqdm.auto import tqdm | 18 | from tqdm.auto import tqdm |
| 19 | from slugify import slugify | ||
| 15 | 20 | ||
| 21 | from data.csv import VlpnDataModule, VlpnDataItem | ||
| 22 | from util import load_embeddings_from_dir | ||
| 16 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | 23 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion |
| 24 | from models.clip.embeddings import patch_managed_embeddings | ||
| 17 | from models.clip.util import get_extended_embeddings | 25 | from models.clip.util import get_extended_embeddings |
| 26 | from models.clip.tokenizer import MultiCLIPTokenizer | ||
| 18 | from training.optimization import get_one_cycle_schedule | 27 | from training.optimization import get_one_cycle_schedule |
| 19 | from training.util import AverageMeter, CheckpointerBase | 28 | from training.util import AverageMeter, CheckpointerBase |
| 20 | 29 | ||
| 21 | 30 | ||
| 31 | class TrainingSetup(NamedTuple): | ||
| 32 | accelerator: Accelerator | ||
| 33 | tokenizer: MultiCLIPTokenizer | ||
| 34 | text_encoder: CLIPTextModel | ||
| 35 | vae: AutoencoderKL | ||
| 36 | unet: UNet2DConditionModel | ||
| 37 | noise_scheduler: DDPMScheduler | ||
| 38 | checkpoint_scheduler: DPMSolverMultistepScheduler | ||
| 39 | optimizer_class: Callable | ||
| 40 | learning_rate: float | ||
| 41 | weight_dtype: torch.dtype | ||
| 42 | output_dir: Path | ||
| 43 | seed: int | ||
| 44 | train_dataloader: DataLoader | ||
| 45 | val_dataloader: DataLoader | ||
| 46 | placeholder_token: list[str] | ||
| 47 | placeholder_token_ids: list[list[int]] | ||
| 48 | |||
| 49 | |||
| 22 | def noop(*args, **kwards): | 50 | def noop(*args, **kwards): |
| 23 | pass | 51 | pass |
| 24 | 52 | ||
| 25 | 53 | ||
| 54 | def noop_ctx(*args, **kwards): | ||
| 55 | return nullcontext() | ||
| 56 | |||
| 57 | |||
| 26 | def noop_on_log(): | 58 | def noop_on_log(): |
| 27 | return {} | 59 | return {} |
| 28 | 60 | ||
| 29 | 61 | ||
| 30 | def get_scheduler( | 62 | def get_scheduler( |
| 31 | id: str, | 63 | id: str, |
| 32 | min_lr: float, | ||
| 33 | lr: float, | ||
| 34 | warmup_func: str, | ||
| 35 | annealing_func: str, | ||
| 36 | warmup_exp: int, | ||
| 37 | annealing_exp: int, | ||
| 38 | cycles: int, | ||
| 39 | train_epochs: int, | ||
| 40 | warmup_epochs: int, | ||
| 41 | optimizer: torch.optim.Optimizer, | 64 | optimizer: torch.optim.Optimizer, |
| 42 | num_training_steps_per_epoch: int, | 65 | num_training_steps_per_epoch: int, |
| 43 | gradient_accumulation_steps: int, | 66 | gradient_accumulation_steps: int, |
| 67 | min_lr: float = 0.04, | ||
| 68 | warmup_func: str = "cos", | ||
| 69 | annealing_func: str = "cos", | ||
| 70 | warmup_exp: int = 1, | ||
| 71 | annealing_exp: int = 1, | ||
| 72 | cycles: int = 1, | ||
| 73 | train_epochs: int = 100, | ||
| 74 | warmup_epochs: int = 10, | ||
| 44 | ): | 75 | ): |
| 45 | num_training_steps_per_epoch = math.ceil( | 76 | num_training_steps_per_epoch = math.ceil( |
| 46 | num_training_steps_per_epoch / gradient_accumulation_steps | 77 | num_training_steps_per_epoch / gradient_accumulation_steps |
| @@ -49,8 +80,6 @@ def get_scheduler( | |||
| 49 | num_warmup_steps = warmup_epochs * num_training_steps_per_epoch | 80 | num_warmup_steps = warmup_epochs * num_training_steps_per_epoch |
| 50 | 81 | ||
| 51 | if id == "one_cycle": | 82 | if id == "one_cycle": |
| 52 | min_lr = 0.04 if min_lr is None else min_lr / lr | ||
| 53 | |||
| 54 | lr_scheduler = get_one_cycle_schedule( | 83 | lr_scheduler = get_one_cycle_schedule( |
| 55 | optimizer=optimizer, | 84 | optimizer=optimizer, |
| 56 | num_training_steps=num_training_steps, | 85 | num_training_steps=num_training_steps, |
| @@ -133,6 +162,196 @@ def generate_class_images( | |||
| 133 | torch.cuda.empty_cache() | 162 | torch.cuda.empty_cache() |
| 134 | 163 | ||
| 135 | 164 | ||
| 165 | def train_setup( | ||
| 166 | output_dir: str, | ||
| 167 | project: str, | ||
| 168 | pretrained_model_name_or_path: str, | ||
| 169 | learning_rate: float, | ||
| 170 | data_file: str, | ||
| 171 | gradient_accumulation_steps: int = 1, | ||
| 172 | mixed_precision: Literal["no", "fp16", "bf16"] = "no", | ||
| 173 | seed: Optional[int] = None, | ||
| 174 | vector_shuffle: Union[bool, Literal["all", "trailing", "leading", "between", "off"]] = "auto", | ||
| 175 | vector_dropout: float = 0.1, | ||
| 176 | gradient_checkpointing: bool = True, | ||
| 177 | embeddings_dir: Optional[str] = None, | ||
| 178 | placeholder_token: list[str] = [], | ||
| 179 | initializer_token: list[str] = [], | ||
| 180 | num_vectors: int = 1, | ||
| 181 | scale_lr: bool = False, | ||
| 182 | use_8bit_adam: bool = False, | ||
| 183 | train_batch_size: int = 1, | ||
| 184 | class_image_dir: Optional[str] = None, | ||
| 185 | num_class_images: int = 0, | ||
| 186 | resolution: int = 768, | ||
| 187 | num_buckets: int = 0, | ||
| 188 | progressive_buckets: bool = False, | ||
| 189 | bucket_step_size: int = 64, | ||
| 190 | bucket_max_pixels: Optional[int] = None, | ||
| 191 | tag_dropout: float = 0.1, | ||
| 192 | tag_shuffle: bool = True, | ||
| 193 | data_template: str = "template", | ||
| 194 | valid_set_size: Optional[int] = None, | ||
| 195 | valid_set_repeat: int = 1, | ||
| 196 | data_filter: Optional[Callable[[VlpnDataItem], bool]] = None, | ||
| 197 | sample_batch_size: int = 1, | ||
| 198 | sample_image_size: int = 768, | ||
| 199 | sample_steps: int = 20, | ||
| 200 | ) -> TrainingSetup: | ||
| 201 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | ||
| 202 | output_dir = Path(output_dir).joinpath(slugify(project), now) | ||
| 203 | output_dir.mkdir(parents=True, exist_ok=True) | ||
| 204 | |||
| 205 | accelerator = Accelerator( | ||
| 206 | log_with=LoggerType.TENSORBOARD, | ||
| 207 | logging_dir=f"{output_dir}", | ||
| 208 | gradient_accumulation_steps=gradient_accumulation_steps, | ||
| 209 | mixed_precision=mixed_precision | ||
| 210 | ) | ||
| 211 | |||
| 212 | logging.basicConfig(filename=output_dir.joinpath("log.txt"), level=logging.DEBUG) | ||
| 213 | |||
| 214 | seed = seed or (torch.random.seed() >> 32) | ||
| 215 | set_seed(seed) | ||
| 216 | |||
| 217 | # Load the tokenizer and add the placeholder token as a additional special token | ||
| 218 | tokenizer = MultiCLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder='tokenizer') | ||
| 219 | tokenizer.set_use_vector_shuffle(vector_shuffle) | ||
| 220 | tokenizer.set_dropout(vector_dropout) | ||
| 221 | |||
| 222 | # Load models and create wrapper for stable diffusion | ||
| 223 | text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path, subfolder='text_encoder') | ||
| 224 | vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder='vae') | ||
| 225 | unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder='unet') | ||
| 226 | noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder='scheduler') | ||
| 227 | checkpoint_scheduler = DPMSolverMultistepScheduler.from_pretrained( | ||
| 228 | pretrained_model_name_or_path, subfolder='scheduler') | ||
| 229 | |||
| 230 | vae.enable_slicing() | ||
| 231 | vae.set_use_memory_efficient_attention_xformers(True) | ||
| 232 | unet.set_use_memory_efficient_attention_xformers(True) | ||
| 233 | |||
| 234 | if gradient_checkpointing: | ||
| 235 | unet.enable_gradient_checkpointing() | ||
| 236 | text_encoder.gradient_checkpointing_enable() | ||
| 237 | |||
| 238 | embeddings = patch_managed_embeddings(text_encoder) | ||
| 239 | |||
| 240 | if embeddings_dir is not None: | ||
| 241 | embeddings_dir = Path(embeddings_dir) | ||
| 242 | if not embeddings_dir.exists() or not embeddings_dir.is_dir(): | ||
| 243 | raise ValueError("--embeddings_dir must point to an existing directory") | ||
| 244 | |||
| 245 | added_tokens, added_ids = load_embeddings_from_dir(tokenizer, embeddings, embeddings_dir) | ||
| 246 | print(f"Added {len(added_tokens)} tokens from embeddings dir: {list(zip(added_tokens, added_ids))}") | ||
| 247 | |||
| 248 | # Convert the initializer_token, placeholder_token to ids | ||
| 249 | initializer_token_ids = [ | ||
| 250 | tokenizer.encode(token, add_special_tokens=False) | ||
| 251 | for token in initializer_token | ||
| 252 | ] | ||
| 253 | |||
| 254 | placeholder_token_ids = tokenizer.add_multi_tokens(placeholder_token, num_vectors) | ||
| 255 | embeddings.resize(len(tokenizer)) | ||
| 256 | |||
| 257 | for (new_id, init_ids) in zip(placeholder_token_ids, initializer_token_ids): | ||
| 258 | embeddings.add_embed(new_id, init_ids) | ||
| 259 | |||
| 260 | init_ratios = [ | ||
| 261 | f"{len(init_ids)} / {len(new_id)}" | ||
| 262 | for new_id, init_ids in zip(placeholder_token_ids, initializer_token_ids) | ||
| 263 | ] | ||
| 264 | |||
| 265 | print(f"Added {len(placeholder_token_ids)} new tokens: {list(zip(placeholder_token, placeholder_token_ids, init_ratios))}") | ||
| 266 | |||
| 267 | vae.requires_grad_(False) | ||
| 268 | unet.requires_grad_(False) | ||
| 269 | text_encoder.requires_grad_(False) | ||
| 270 | |||
| 271 | if scale_lr: | ||
| 272 | learning_rate = ( | ||
| 273 | learning_rate * gradient_accumulation_steps * | ||
| 274 | train_batch_size * accelerator.num_processes | ||
| 275 | ) | ||
| 276 | |||
| 277 | # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | ||
| 278 | if use_8bit_adam: | ||
| 279 | try: | ||
| 280 | import bitsandbytes as bnb | ||
| 281 | except ImportError: | ||
| 282 | raise ImportError("To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`.") | ||
| 283 | |||
| 284 | optimizer_class = bnb.optim.AdamW8bit | ||
| 285 | else: | ||
| 286 | optimizer_class = torch.optim.AdamW | ||
| 287 | |||
| 288 | weight_dtype = torch.float32 | ||
| 289 | if mixed_precision == "fp16": | ||
| 290 | weight_dtype = torch.float16 | ||
| 291 | elif mixed_precision == "bf16": | ||
| 292 | weight_dtype = torch.bfloat16 | ||
| 293 | |||
| 294 | datamodule = VlpnDataModule( | ||
| 295 | data_file=data_file, | ||
| 296 | batch_size=train_batch_size, | ||
| 297 | tokenizer=tokenizer, | ||
| 298 | class_subdir=class_image_dir, | ||
| 299 | num_class_images=num_class_images, | ||
| 300 | size=resolution, | ||
| 301 | num_buckets=num_buckets, | ||
| 302 | progressive_buckets=progressive_buckets, | ||
| 303 | bucket_step_size=bucket_step_size, | ||
| 304 | bucket_max_pixels=bucket_max_pixels, | ||
| 305 | dropout=tag_dropout, | ||
| 306 | shuffle=tag_shuffle, | ||
| 307 | template_key=data_template, | ||
| 308 | valid_set_size=valid_set_size, | ||
| 309 | valid_set_repeat=valid_set_repeat, | ||
| 310 | seed=seed, | ||
| 311 | filter=data_filter, | ||
| 312 | dtype=weight_dtype | ||
| 313 | ) | ||
| 314 | datamodule.setup() | ||
| 315 | |||
| 316 | train_dataloader = datamodule.train_dataloader | ||
| 317 | val_dataloader = datamodule.val_dataloader | ||
| 318 | |||
| 319 | train_dataloader, val_dataloader = accelerator.prepare(train_dataloader, val_dataloader) | ||
| 320 | |||
| 321 | if num_class_images != 0: | ||
| 322 | generate_class_images( | ||
| 323 | accelerator, | ||
| 324 | text_encoder, | ||
| 325 | vae, | ||
| 326 | unet, | ||
| 327 | tokenizer, | ||
| 328 | checkpoint_scheduler, | ||
| 329 | datamodule.data_train, | ||
| 330 | sample_batch_size, | ||
| 331 | sample_image_size, | ||
| 332 | sample_steps | ||
| 333 | ) | ||
| 334 | |||
| 335 | return TrainingSetup( | ||
| 336 | accelerator=accelerator, | ||
| 337 | tokenizer=tokenizer, | ||
| 338 | text_encoder=text_encoder, | ||
| 339 | vae=vae, | ||
| 340 | unet=unet, | ||
| 341 | noise_scheduler=noise_scheduler, | ||
| 342 | checkpoint_scheduler=checkpoint_scheduler, | ||
| 343 | optimizer_class=optimizer_class, | ||
| 344 | learning_rate=learning_rate, | ||
| 345 | output_dir=output_dir, | ||
| 346 | weight_dtype=weight_dtype, | ||
| 347 | seed=seed, | ||
| 348 | train_dataloader=train_dataloader, | ||
| 349 | val_dataloader=val_dataloader, | ||
| 350 | placeholder_token=placeholder_token, | ||
| 351 | placeholder_token_ids=placeholder_token_ids | ||
| 352 | ) | ||
| 353 | |||
| 354 | |||
| 136 | def loss_step( | 355 | def loss_step( |
| 137 | vae: AutoencoderKL, | 356 | vae: AutoencoderKL, |
| 138 | noise_scheduler: DDPMScheduler, | 357 | noise_scheduler: DDPMScheduler, |
| @@ -221,15 +440,14 @@ def train_loop( | |||
| 221 | sample_steps: int = 20, | 440 | sample_steps: int = 20, |
| 222 | checkpoint_frequency: int = 50, | 441 | checkpoint_frequency: int = 50, |
| 223 | global_step_offset: int = 0, | 442 | global_step_offset: int = 0, |
| 224 | gradient_accumulation_steps: int = 1, | ||
| 225 | num_epochs: int = 100, | 443 | num_epochs: int = 100, |
| 226 | on_log: Callable[[], dict[str, Any]] = noop_on_log, | 444 | on_log: Callable[[], dict[str, Any]] = noop_on_log, |
| 227 | on_train: Callable[[], _GeneratorContextManager] = nullcontext, | 445 | on_train: Callable[[int], _GeneratorContextManager] = noop_ctx, |
| 228 | on_before_optimize: Callable[[], None] = noop, | 446 | on_before_optimize: Callable[[int], None] = noop, |
| 229 | on_after_optimize: Callable[[float], None] = noop, | 447 | on_after_optimize: Callable[[float], None] = noop, |
| 230 | on_eval: Callable[[], _GeneratorContextManager] = nullcontext | 448 | on_eval: Callable[[], _GeneratorContextManager] = noop_ctx |
| 231 | ): | 449 | ): |
| 232 | num_training_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps) | 450 | num_training_steps_per_epoch = math.ceil(len(train_dataloader) / accelerator.gradient_accumulation_steps) |
| 233 | num_val_steps_per_epoch = len(val_dataloader) | 451 | num_val_steps_per_epoch = len(val_dataloader) |
| 234 | 452 | ||
| 235 | num_training_steps = num_training_steps_per_epoch * num_epochs | 453 | num_training_steps = num_training_steps_per_epoch * num_epochs |
| @@ -273,14 +491,14 @@ def train_loop( | |||
| 273 | 491 | ||
| 274 | model.train() | 492 | model.train() |
| 275 | 493 | ||
| 276 | with on_train(): | 494 | with on_train(epoch): |
| 277 | for step, batch in enumerate(train_dataloader): | 495 | for step, batch in enumerate(train_dataloader): |
| 278 | with accelerator.accumulate(model): | 496 | with accelerator.accumulate(model): |
| 279 | loss, acc, bsz = loss_step(step, batch) | 497 | loss, acc, bsz = loss_step(step, batch) |
| 280 | 498 | ||
| 281 | accelerator.backward(loss) | 499 | accelerator.backward(loss) |
| 282 | 500 | ||
| 283 | on_before_optimize() | 501 | on_before_optimize(epoch) |
| 284 | 502 | ||
| 285 | optimizer.step() | 503 | optimizer.step() |
| 286 | lr_scheduler.step() | 504 | lr_scheduler.step() |
diff --git a/training/lr.py b/training/lr.py index 84e30a0..7584ba2 100644 --- a/training/lr.py +++ b/training/lr.py | |||
| @@ -16,6 +16,10 @@ def noop(*args, **kwards): | |||
| 16 | pass | 16 | pass |
| 17 | 17 | ||
| 18 | 18 | ||
| 19 | def noop_ctx(*args, **kwards): | ||
| 20 | return nullcontext() | ||
| 21 | |||
| 22 | |||
| 19 | class LRFinder(): | 23 | class LRFinder(): |
| 20 | def __init__( | 24 | def __init__( |
| 21 | self, | 25 | self, |
| @@ -25,10 +29,10 @@ class LRFinder(): | |||
| 25 | train_dataloader, | 29 | train_dataloader, |
| 26 | val_dataloader, | 30 | val_dataloader, |
| 27 | loss_fn: Union[Callable[[int, Any], Tuple[Any, Any, int]], Callable[[int, Any, bool], Tuple[Any, Any, int]]], | 31 | loss_fn: Union[Callable[[int, Any], Tuple[Any, Any, int]], Callable[[int, Any, bool], Tuple[Any, Any, int]]], |
| 28 | on_train: Callable[[], _GeneratorContextManager] = nullcontext, | 32 | on_train: Callable[[int], _GeneratorContextManager] = noop_ctx, |
| 29 | on_before_optimize: Callable[[], None] = noop, | 33 | on_before_optimize: Callable[[int], None] = noop, |
| 30 | on_after_optimize: Callable[[float], None] = noop, | 34 | on_after_optimize: Callable[[float], None] = noop, |
| 31 | on_eval: Callable[[], _GeneratorContextManager] = nullcontext | 35 | on_eval: Callable[[], _GeneratorContextManager] = noop_ctx |
| 32 | ): | 36 | ): |
| 33 | self.accelerator = accelerator | 37 | self.accelerator = accelerator |
| 34 | self.model = model | 38 | self.model = model |
| @@ -86,7 +90,7 @@ class LRFinder(): | |||
| 86 | 90 | ||
| 87 | self.model.train() | 91 | self.model.train() |
| 88 | 92 | ||
| 89 | with self.on_train(): | 93 | with self.on_train(epoch): |
| 90 | for step, batch in enumerate(self.train_dataloader): | 94 | for step, batch in enumerate(self.train_dataloader): |
| 91 | if step >= num_train_batches: | 95 | if step >= num_train_batches: |
| 92 | break | 96 | break |
| @@ -96,7 +100,7 @@ class LRFinder(): | |||
| 96 | 100 | ||
| 97 | self.accelerator.backward(loss) | 101 | self.accelerator.backward(loss) |
| 98 | 102 | ||
| 99 | self.on_before_optimize() | 103 | self.on_before_optimize(epoch) |
| 100 | 104 | ||
| 101 | self.optimizer.step() | 105 | self.optimizer.step() |
| 102 | lr_scheduler.step() | 106 | lr_scheduler.step() |
diff --git a/training/modules/dreambooth.py b/training/modules/dreambooth.py new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/training/modules/dreambooth.py | |||
diff --git a/training/modules/lora.py b/training/modules/lora.py new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/training/modules/lora.py | |||
diff --git a/training/modules/ti.py b/training/modules/ti.py new file mode 100644 index 0000000..2db6f88 --- /dev/null +++ b/training/modules/ti.py | |||
| @@ -0,0 +1,284 @@ | |||
| 1 | from typing import Literal | ||
| 2 | from functools import partial | ||
| 3 | from contextlib import contextmanager, nullcontext | ||
| 4 | |||
| 5 | import torch | ||
| 6 | |||
| 7 | from slugify import slugify | ||
| 8 | |||
| 9 | from accelerate import Accelerator | ||
| 10 | from transformers import CLIPTextModel | ||
| 11 | from diffusers import AutoencoderKL, UNet2DConditionModel | ||
| 12 | |||
| 13 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | ||
| 14 | from models.clip.tokenizer import MultiCLIPTokenizer | ||
| 15 | |||
| 16 | from training.common import TrainingSetup, get_scheduler, train_loop, loss_step | ||
| 17 | from training.util import EMAModel, CheckpointerBase | ||
| 18 | |||
| 19 | |||
| 20 | class Checkpointer(CheckpointerBase): | ||
| 21 | def __init__( | ||
| 22 | self, | ||
| 23 | accelerator: Accelerator, | ||
| 24 | vae: AutoencoderKL, | ||
| 25 | unet: UNet2DConditionModel, | ||
| 26 | tokenizer: MultiCLIPTokenizer, | ||
| 27 | text_encoder: CLIPTextModel, | ||
| 28 | ema_embeddings: EMAModel, | ||
| 29 | weight_dtype: torch.dtype, | ||
| 30 | scheduler, | ||
| 31 | placeholder_token, | ||
| 32 | placeholder_token_ids, | ||
| 33 | *args, | ||
| 34 | **kwargs | ||
| 35 | ): | ||
| 36 | super().__init__(*args, **kwargs) | ||
| 37 | |||
| 38 | self.weight_dtype = weight_dtype | ||
| 39 | self.accelerator = accelerator | ||
| 40 | self.vae = vae | ||
| 41 | self.unet = unet | ||
| 42 | self.tokenizer = tokenizer | ||
| 43 | self.text_encoder = text_encoder | ||
| 44 | self.ema_embeddings = ema_embeddings | ||
| 45 | self.scheduler = scheduler | ||
| 46 | self.placeholder_token = placeholder_token | ||
| 47 | self.placeholder_token_ids = placeholder_token_ids | ||
| 48 | |||
| 49 | @torch.no_grad() | ||
| 50 | def checkpoint(self, step, postfix): | ||
| 51 | print("Saving checkpoint for step %d..." % step) | ||
| 52 | |||
| 53 | checkpoints_path = self.output_dir.joinpath("checkpoints") | ||
| 54 | checkpoints_path.mkdir(parents=True, exist_ok=True) | ||
| 55 | |||
| 56 | text_encoder = self.accelerator.unwrap_model(self.text_encoder) | ||
| 57 | |||
| 58 | ema_context = nullcontext() | ||
| 59 | if self.ema_embeddings is not None: | ||
| 60 | ema_context = self.ema_embeddings.apply_temporary( | ||
| 61 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
| 62 | |||
| 63 | with ema_context: | ||
| 64 | for (token, ids) in zip(self.placeholder_token, self.placeholder_token_ids): | ||
| 65 | text_encoder.text_model.embeddings.save_embed( | ||
| 66 | ids, | ||
| 67 | checkpoints_path.joinpath(f"{slugify(token)}_{step}_{postfix}.bin") | ||
| 68 | ) | ||
| 69 | |||
| 70 | del text_encoder | ||
| 71 | |||
| 72 | @torch.no_grad() | ||
| 73 | def save_samples(self, step, num_inference_steps, guidance_scale=7.5, eta=0.0): | ||
| 74 | text_encoder = self.accelerator.unwrap_model(self.text_encoder) | ||
| 75 | |||
| 76 | ema_context = nullcontext() | ||
| 77 | if self.ema_embeddings is not None: | ||
| 78 | ema_context = self.ema_embeddings.apply_temporary( | ||
| 79 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
| 80 | |||
| 81 | with ema_context: | ||
| 82 | orig_dtype = text_encoder.dtype | ||
| 83 | text_encoder.to(dtype=self.weight_dtype) | ||
| 84 | |||
| 85 | pipeline = VlpnStableDiffusion( | ||
| 86 | text_encoder=text_encoder, | ||
| 87 | vae=self.vae, | ||
| 88 | unet=self.unet, | ||
| 89 | tokenizer=self.tokenizer, | ||
| 90 | scheduler=self.scheduler, | ||
| 91 | ).to(self.accelerator.device) | ||
| 92 | pipeline.set_progress_bar_config(dynamic_ncols=True) | ||
| 93 | |||
| 94 | super().save_samples(pipeline, step, num_inference_steps, guidance_scale, eta) | ||
| 95 | |||
| 96 | text_encoder.to(dtype=orig_dtype) | ||
| 97 | |||
| 98 | del text_encoder | ||
| 99 | del pipeline | ||
| 100 | |||
| 101 | if torch.cuda.is_available(): | ||
| 102 | torch.cuda.empty_cache() | ||
| 103 | |||
| 104 | |||
| 105 | def train_ti( | ||
| 106 | setup: TrainingSetup, | ||
| 107 | num_train_epochs: int = 100, | ||
| 108 | num_class_images: int = 0, | ||
| 109 | prior_loss_weight: float = 1.0, | ||
| 110 | use_ema: bool = False, | ||
| 111 | ema_inv_gamma: float = 1.0, | ||
| 112 | ema_power: float = 4/5, | ||
| 113 | ema_max_decay: float = .9999, | ||
| 114 | adam_beta1: float = 0.9, | ||
| 115 | adam_beta2: float = 0.999, | ||
| 116 | adam_weight_decay: float = 0, | ||
| 117 | adam_epsilon: float = 1e-08, | ||
| 118 | adam_amsgrad: bool = False, | ||
| 119 | lr_scheduler: Literal[ | ||
| 120 | "linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup", "one_cycle" | ||
| 121 | ] = "one_cycle", | ||
| 122 | lr_min_lr: float = 0.04, | ||
| 123 | lr_warmup_func: Literal["linear", "cos"] = "cos", | ||
| 124 | lr_annealing_func: Literal["linear", "half_cos", "cos"] = "cos", | ||
| 125 | lr_warmup_exp: int = 1, | ||
| 126 | lr_annealing_exp: int = 1, | ||
| 127 | lr_cycles: int = 1, | ||
| 128 | lr_warmup_epochs: int = 10, | ||
| 129 | emb_decay_target: float = 0.4, | ||
| 130 | emb_decay_factor: float = 1, | ||
| 131 | emb_decay_start: float = 1e-4, | ||
| 132 | sample_image_size: int = 768, | ||
| 133 | sample_batch_size: int = 1, | ||
| 134 | sample_batches: int = 1, | ||
| 135 | sample_frequency: int = 10, | ||
| 136 | sample_steps: int = 20, | ||
| 137 | checkpoint_frequency: int = 50, | ||
| 138 | global_step_offset: int = 0, | ||
| 139 | ): | ||
| 140 | if use_ema: | ||
| 141 | ema_embeddings = EMAModel( | ||
| 142 | setup.text_encoder.text_model.embeddings.temp_token_embedding.parameters(), | ||
| 143 | inv_gamma=ema_inv_gamma, | ||
| 144 | power=ema_power, | ||
| 145 | max_value=ema_max_decay, | ||
| 146 | ) | ||
| 147 | else: | ||
| 148 | ema_embeddings = None | ||
| 149 | |||
| 150 | setup.text_encoder.requires_grad_(True) | ||
| 151 | setup.text_encoder.text_model.encoder.requires_grad_(False) | ||
| 152 | setup.text_encoder.text_model.final_layer_norm.requires_grad_(False) | ||
| 153 | setup.text_encoder.text_model.embeddings.position_embedding.requires_grad_(False) | ||
| 154 | setup.text_encoder.text_model.embeddings.token_embedding.requires_grad_(False) | ||
| 155 | |||
| 156 | # Initialize the optimizer | ||
| 157 | optimizer = setup.optimizer_class( | ||
| 158 | setup.text_encoder.text_model.embeddings.temp_token_embedding.parameters(), | ||
| 159 | lr=setup.learning_rate, | ||
| 160 | betas=(adam_beta1, adam_beta2), | ||
| 161 | weight_decay=adam_weight_decay, | ||
| 162 | eps=adam_epsilon, | ||
| 163 | amsgrad=adam_amsgrad, | ||
| 164 | ) | ||
| 165 | |||
| 166 | lr_scheduler = get_scheduler( | ||
| 167 | lr_scheduler, | ||
| 168 | optimizer=optimizer, | ||
| 169 | min_lr=lr_min_lr, | ||
| 170 | warmup_func=lr_warmup_func, | ||
| 171 | annealing_func=lr_annealing_func, | ||
| 172 | warmup_exp=lr_warmup_exp, | ||
| 173 | annealing_exp=lr_annealing_exp, | ||
| 174 | cycles=lr_cycles, | ||
| 175 | train_epochs=num_train_epochs, | ||
| 176 | warmup_epochs=lr_warmup_epochs, | ||
| 177 | num_training_steps_per_epoch=len(setup.train_dataloader), | ||
| 178 | gradient_accumulation_steps=setup.accelerator.gradient_accumulation_steps | ||
| 179 | ) | ||
| 180 | |||
| 181 | text_encoder, optimizer, lr_scheduler = setup.accelerator.prepare( | ||
| 182 | setup.text_encoder, optimizer, lr_scheduler | ||
| 183 | ) | ||
| 184 | |||
| 185 | # Move vae and unet to device | ||
| 186 | setup.vae.to(setup.accelerator.device, dtype=setup.weight_dtype) | ||
| 187 | setup.unet.to(setup.accelerator.device, dtype=setup.weight_dtype) | ||
| 188 | |||
| 189 | if use_ema: | ||
| 190 | ema_embeddings.to(setup.accelerator.device) | ||
| 191 | |||
| 192 | setup.unet.train() | ||
| 193 | |||
| 194 | @contextmanager | ||
| 195 | def on_train(epoch: int): | ||
| 196 | try: | ||
| 197 | setup.tokenizer.train() | ||
| 198 | yield | ||
| 199 | finally: | ||
| 200 | pass | ||
| 201 | |||
| 202 | @contextmanager | ||
| 203 | def on_eval(): | ||
| 204 | try: | ||
| 205 | setup.tokenizer.eval() | ||
| 206 | |||
| 207 | ema_context = nullcontext() | ||
| 208 | if use_ema: | ||
| 209 | ema_context = ema_embeddings.apply_temporary( | ||
| 210 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
| 211 | |||
| 212 | with ema_context: | ||
| 213 | yield | ||
| 214 | finally: | ||
| 215 | pass | ||
| 216 | |||
| 217 | @torch.no_grad() | ||
| 218 | def on_after_optimize(lr: float): | ||
| 219 | text_encoder.text_model.embeddings.normalize( | ||
| 220 | emb_decay_target, | ||
| 221 | min(1.0, max(0.0, emb_decay_factor * ((lr - emb_decay_start) / (setup.learning_rate - emb_decay_start)))) | ||
| 222 | ) | ||
| 223 | |||
| 224 | if use_ema: | ||
| 225 | ema_embeddings.step(text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
| 226 | |||
| 227 | def on_log(): | ||
| 228 | if use_ema: | ||
| 229 | return {"ema_decay": ema_embeddings.decay} | ||
| 230 | return {} | ||
| 231 | |||
| 232 | loss_step_ = partial( | ||
| 233 | loss_step, | ||
| 234 | setup.vae, | ||
| 235 | setup.noise_scheduler, | ||
| 236 | setup.unet, | ||
| 237 | text_encoder, | ||
| 238 | num_class_images != 0, | ||
| 239 | prior_loss_weight, | ||
| 240 | setup.seed, | ||
| 241 | ) | ||
| 242 | |||
| 243 | checkpointer = Checkpointer( | ||
| 244 | accelerator=setup.accelerator, | ||
| 245 | vae=setup.vae, | ||
| 246 | unet=setup.unet, | ||
| 247 | tokenizer=setup.tokenizer, | ||
| 248 | text_encoder=text_encoder, | ||
| 249 | ema_embeddings=ema_embeddings, | ||
| 250 | weight_dtype=setup.weight_dtype, | ||
| 251 | scheduler=setup.checkpoint_scheduler, | ||
| 252 | placeholder_token=setup.placeholder_token, | ||
| 253 | placeholder_token_ids=setup.placeholder_token_ids, | ||
| 254 | train_dataloader=setup.train_dataloader, | ||
| 255 | val_dataloader=setup.val_dataloader, | ||
| 256 | output_dir=setup.output_dir, | ||
| 257 | seed=setup.seed, | ||
| 258 | sample_image_size=sample_image_size, | ||
| 259 | sample_batch_size=sample_batch_size, | ||
| 260 | sample_batches=sample_batches | ||
| 261 | ) | ||
| 262 | |||
| 263 | if setup.accelerator.is_main_process: | ||
| 264 | setup.accelerator.init_trackers("textual_inversion") | ||
| 265 | |||
| 266 | train_loop( | ||
| 267 | accelerator=setup.accelerator, | ||
| 268 | optimizer=optimizer, | ||
| 269 | lr_scheduler=lr_scheduler, | ||
| 270 | model=text_encoder, | ||
| 271 | checkpointer=checkpointer, | ||
| 272 | train_dataloader=setup.train_dataloader, | ||
| 273 | val_dataloader=setup.val_dataloader, | ||
| 274 | loss_step=loss_step_, | ||
| 275 | sample_frequency=sample_frequency, | ||
| 276 | sample_steps=sample_steps, | ||
| 277 | checkpoint_frequency=checkpoint_frequency, | ||
| 278 | global_step_offset=global_step_offset, | ||
| 279 | num_epochs=num_train_epochs, | ||
| 280 | on_log=on_log, | ||
| 281 | on_train=on_train, | ||
| 282 | on_after_optimize=on_after_optimize, | ||
| 283 | on_eval=on_eval | ||
| 284 | ) | ||
diff --git a/training/util.py b/training/util.py index 0ec2032..cc4cdee 100644 --- a/training/util.py +++ b/training/util.py | |||
| @@ -41,14 +41,16 @@ class AverageMeter: | |||
| 41 | class CheckpointerBase: | 41 | class CheckpointerBase: |
| 42 | def __init__( | 42 | def __init__( |
| 43 | self, | 43 | self, |
| 44 | datamodule, | 44 | train_dataloader, |
| 45 | val_dataloader, | ||
| 45 | output_dir: Path, | 46 | output_dir: Path, |
| 46 | sample_image_size: int, | 47 | sample_image_size: int, |
| 47 | sample_batches: int, | 48 | sample_batches: int, |
| 48 | sample_batch_size: int, | 49 | sample_batch_size: int, |
| 49 | seed: Optional[int] = None | 50 | seed: Optional[int] = None |
| 50 | ): | 51 | ): |
| 51 | self.datamodule = datamodule | 52 | self.train_dataloader = train_dataloader |
| 53 | self.val_dataloader = val_dataloader | ||
| 52 | self.output_dir = output_dir | 54 | self.output_dir = output_dir |
| 53 | self.sample_image_size = sample_image_size | 55 | self.sample_image_size = sample_image_size |
| 54 | self.seed = seed if seed is not None else torch.random.seed() | 56 | self.seed = seed if seed is not None else torch.random.seed() |
| @@ -70,15 +72,16 @@ class CheckpointerBase: | |||
| 70 | ): | 72 | ): |
| 71 | samples_path = Path(self.output_dir).joinpath("samples") | 73 | samples_path = Path(self.output_dir).joinpath("samples") |
| 72 | 74 | ||
| 73 | train_data = self.datamodule.train_dataloader | ||
| 74 | val_data = self.datamodule.val_dataloader | ||
| 75 | |||
| 76 | generator = torch.Generator(device=pipeline.device).manual_seed(self.seed) | 75 | generator = torch.Generator(device=pipeline.device).manual_seed(self.seed) |
| 77 | 76 | ||
| 78 | grid_cols = min(self.sample_batch_size, 4) | 77 | grid_cols = min(self.sample_batch_size, 4) |
| 79 | grid_rows = (self.sample_batches * self.sample_batch_size) // grid_cols | 78 | grid_rows = (self.sample_batches * self.sample_batch_size) // grid_cols |
| 80 | 79 | ||
| 81 | for pool, data, gen in [("stable", val_data, generator), ("val", val_data, None), ("train", train_data, None)]: | 80 | for pool, data, gen in [ |
| 81 | ("stable", self.val_dataloader, generator), | ||
| 82 | ("val", self.val_dataloader, None), | ||
| 83 | ("train", self.train_dataloader, None) | ||
| 84 | ]: | ||
| 82 | all_samples = [] | 85 | all_samples = [] |
| 83 | file_path = samples_path.joinpath(pool, f"step_{step}.jpg") | 86 | file_path = samples_path.joinpath(pool, f"step_{step}.jpg") |
| 84 | file_path.parent.mkdir(parents=True, exist_ok=True) | 87 | file_path.parent.mkdir(parents=True, exist_ok=True) |
