diff options
author | Volpeon <git@volpeon.ink> | 2023-01-13 18:59:26 +0100 |
---|---|---|
committer | Volpeon <git@volpeon.ink> | 2023-01-13 18:59:26 +0100 |
commit | 127ec21e5bd4e7df21e36c561d070f8b9a0e19f5 (patch) | |
tree | 61cb98adbf33ed08506601f8b70f1b62bc42c4ee | |
parent | Simplified step calculations (diff) | |
download | textual-inversion-diff-127ec21e5bd4e7df21e36c561d070f8b9a0e19f5.tar.gz textual-inversion-diff-127ec21e5bd4e7df21e36c561d070f8b9a0e19f5.tar.bz2 textual-inversion-diff-127ec21e5bd4e7df21e36c561d070f8b9a0e19f5.zip |
More modularization
-rw-r--r-- | models/clip/embeddings.py | 6 | ||||
-rw-r--r-- | train_dreambooth.py | 272 | ||||
-rw-r--r-- | train_ti.py | 479 | ||||
-rw-r--r-- | training/common.py | 260 | ||||
-rw-r--r-- | training/lr.py | 14 | ||||
-rw-r--r-- | training/modules/dreambooth.py | 0 | ||||
-rw-r--r-- | training/modules/lora.py | 0 | ||||
-rw-r--r-- | training/modules/ti.py | 284 | ||||
-rw-r--r-- | training/util.py | 15 |
9 files changed, 677 insertions, 653 deletions
diff --git a/models/clip/embeddings.py b/models/clip/embeddings.py index 761efbc..9a23a2a 100644 --- a/models/clip/embeddings.py +++ b/models/clip/embeddings.py | |||
@@ -40,8 +40,6 @@ class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings): | |||
40 | self.position_embedding = embeddings.position_embedding | 40 | self.position_embedding = embeddings.position_embedding |
41 | self.initializer_factor = config.initializer_factor | 41 | self.initializer_factor = config.initializer_factor |
42 | 42 | ||
43 | self.decay_target = self.token_embedding.weight[:, :].norm(dim=-1, keepdim=True).median().item() | ||
44 | |||
45 | self.temp_token_embedding = nn.Embedding( | 43 | self.temp_token_embedding = nn.Embedding( |
46 | self.token_embedding.num_embeddings, | 44 | self.token_embedding.num_embeddings, |
47 | self.token_embedding.embedding_dim, | 45 | self.token_embedding.embedding_dim, |
@@ -101,9 +99,7 @@ class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings): | |||
101 | 99 | ||
102 | return embeds | 100 | return embeds |
103 | 101 | ||
104 | def normalize(self, target: Optional[float] = None, lambda_: float = 1.0): | 102 | def normalize(self, target: float = 0.4, lambda_: float = 1.0): |
105 | if target is None: | ||
106 | target = self.decay_target | ||
107 | w = self.temp_token_embedding.weight | 103 | w = self.temp_token_embedding.weight |
108 | pre_norm = w[self.temp_token_ids, :].norm(dim=-1, keepdim=True) | 104 | pre_norm = w[self.temp_token_ids, :].norm(dim=-1, keepdim=True) |
109 | w[self.temp_token_ids] = F.normalize( | 105 | w[self.temp_token_ids] = F.normalize( |
diff --git a/train_dreambooth.py b/train_dreambooth.py index fbbe6c2..c892ebf 100644 --- a/train_dreambooth.py +++ b/train_dreambooth.py | |||
@@ -1,6 +1,5 @@ | |||
1 | import argparse | 1 | import argparse |
2 | import itertools | 2 | import itertools |
3 | import math | ||
4 | import datetime | 3 | import datetime |
5 | import logging | 4 | import logging |
6 | from pathlib import Path | 5 | from pathlib import Path |
@@ -16,16 +15,15 @@ from accelerate.utils import LoggerType, set_seed | |||
16 | from diffusers import AutoencoderKL, DDPMScheduler, DPMSolverMultistepScheduler, UNet2DConditionModel | 15 | from diffusers import AutoencoderKL, DDPMScheduler, DPMSolverMultistepScheduler, UNet2DConditionModel |
17 | import matplotlib.pyplot as plt | 16 | import matplotlib.pyplot as plt |
18 | from diffusers.training_utils import EMAModel | 17 | from diffusers.training_utils import EMAModel |
19 | from tqdm.auto import tqdm | ||
20 | from transformers import CLIPTextModel | 18 | from transformers import CLIPTextModel |
21 | from slugify import slugify | 19 | from slugify import slugify |
22 | 20 | ||
23 | from util import load_config, load_embeddings_from_dir | 21 | from util import load_config, load_embeddings_from_dir |
24 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | 22 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion |
25 | from data.csv import VlpnDataModule, VlpnDataItem | 23 | from data.csv import VlpnDataModule, VlpnDataItem |
26 | from training.common import loss_step, generate_class_images, get_scheduler | 24 | from training.common import loss_step, train_loop, generate_class_images, get_scheduler |
27 | from training.lr import LRFinder | 25 | from training.lr import LRFinder |
28 | from training.util import AverageMeter, CheckpointerBase, save_args | 26 | from training.util import CheckpointerBase, save_args |
29 | from models.clip.embeddings import patch_managed_embeddings | 27 | from models.clip.embeddings import patch_managed_embeddings |
30 | from models.clip.tokenizer import MultiCLIPTokenizer | 28 | from models.clip.tokenizer import MultiCLIPTokenizer |
31 | 29 | ||
@@ -292,7 +290,7 @@ def parse_args(): | |||
292 | parser.add_argument( | 290 | parser.add_argument( |
293 | "--lr_min_lr", | 291 | "--lr_min_lr", |
294 | type=float, | 292 | type=float, |
295 | default=None, | 293 | default=0.04, |
296 | help="Minimum learning rate in the lr scheduler." | 294 | help="Minimum learning rate in the lr scheduler." |
297 | ) | 295 | ) |
298 | parser.add_argument( | 296 | parser.add_argument( |
@@ -787,14 +785,6 @@ def main(): | |||
787 | args.sample_steps | 785 | args.sample_steps |
788 | ) | 786 | ) |
789 | 787 | ||
790 | # Scheduler and math around the number of training steps. | ||
791 | overrode_max_train_steps = False | ||
792 | num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | ||
793 | if args.max_train_steps is None: | ||
794 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | ||
795 | overrode_max_train_steps = True | ||
796 | num_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | ||
797 | |||
798 | if args.find_lr: | 788 | if args.find_lr: |
799 | lr_scheduler = None | 789 | lr_scheduler = None |
800 | else: | 790 | else: |
@@ -802,15 +792,14 @@ def main(): | |||
802 | args.lr_scheduler, | 792 | args.lr_scheduler, |
803 | optimizer=optimizer, | 793 | optimizer=optimizer, |
804 | min_lr=args.lr_min_lr, | 794 | min_lr=args.lr_min_lr, |
805 | lr=args.learning_rate, | ||
806 | warmup_func=args.lr_warmup_func, | 795 | warmup_func=args.lr_warmup_func, |
807 | annealing_func=args.lr_annealing_func, | 796 | annealing_func=args.lr_annealing_func, |
808 | warmup_exp=args.lr_warmup_exp, | 797 | warmup_exp=args.lr_warmup_exp, |
809 | annealing_exp=args.lr_annealing_exp, | 798 | annealing_exp=args.lr_annealing_exp, |
810 | cycles=args.lr_cycles, | 799 | cycles=args.lr_cycles, |
800 | train_epochs=args.num_train_epochs, | ||
811 | warmup_epochs=args.lr_warmup_epochs, | 801 | warmup_epochs=args.lr_warmup_epochs, |
812 | max_train_steps=args.max_train_steps, | 802 | num_training_steps_per_epoch=len(train_dataloader), |
813 | num_update_steps_per_epoch=num_update_steps_per_epoch, | ||
814 | gradient_accumulation_steps=args.gradient_accumulation_steps | 803 | gradient_accumulation_steps=args.gradient_accumulation_steps |
815 | ) | 804 | ) |
816 | 805 | ||
@@ -827,19 +816,16 @@ def main(): | |||
827 | if args.use_ema: | 816 | if args.use_ema: |
828 | ema_unet.to(accelerator.device) | 817 | ema_unet.to(accelerator.device) |
829 | 818 | ||
830 | # We need to recalculate our total training steps as the size of the training dataloader may have changed. | ||
831 | num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | ||
832 | if overrode_max_train_steps: | ||
833 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | ||
834 | |||
835 | num_val_steps_per_epoch = len(val_dataloader) | ||
836 | num_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | ||
837 | val_steps = num_val_steps_per_epoch * num_epochs | ||
838 | |||
839 | @contextmanager | 819 | @contextmanager |
840 | def on_train(): | 820 | def on_train(epoch: int): |
841 | try: | 821 | try: |
842 | tokenizer.train() | 822 | tokenizer.train() |
823 | |||
824 | if epoch < args.train_text_encoder_epochs: | ||
825 | text_encoder.train() | ||
826 | elif epoch == args.train_text_encoder_epochs: | ||
827 | text_encoder.requires_grad_(False) | ||
828 | |||
843 | yield | 829 | yield |
844 | finally: | 830 | finally: |
845 | pass | 831 | pass |
@@ -848,6 +834,7 @@ def main(): | |||
848 | def on_eval(): | 834 | def on_eval(): |
849 | try: | 835 | try: |
850 | tokenizer.eval() | 836 | tokenizer.eval() |
837 | text_encoder.eval() | ||
851 | 838 | ||
852 | ema_context = ema_unet.apply_temporary(unet.parameters()) if args.use_ema else nullcontext() | 839 | ema_context = ema_unet.apply_temporary(unet.parameters()) if args.use_ema else nullcontext() |
853 | 840 | ||
@@ -856,7 +843,7 @@ def main(): | |||
856 | finally: | 843 | finally: |
857 | pass | 844 | pass |
858 | 845 | ||
859 | def on_before_optimize(): | 846 | def on_before_optimize(epoch: int): |
860 | if accelerator.sync_gradients: | 847 | if accelerator.sync_gradients: |
861 | params_to_clip = [unet.parameters()] | 848 | params_to_clip = [unet.parameters()] |
862 | if args.train_text_encoder and epoch < args.train_text_encoder_epochs: | 849 | if args.train_text_encoder and epoch < args.train_text_encoder_epochs: |
@@ -866,9 +853,17 @@ def main(): | |||
866 | @torch.no_grad() | 853 | @torch.no_grad() |
867 | def on_after_optimize(lr: float): | 854 | def on_after_optimize(lr: float): |
868 | if not args.train_text_encoder: | 855 | if not args.train_text_encoder: |
869 | text_encoder.text_model.embeddings.normalize(min(1.0, 100 * lr)) | 856 | text_encoder.text_model.embeddings.normalize( |
857 | args.decay_target, | ||
858 | min(1.0, max(0.0, args.decay_factor * ((lr - args.decay_start) / (args.learning_rate - args.decay_start)))) | ||
859 | ) | ||
860 | |||
861 | def on_log(): | ||
862 | if args.use_ema: | ||
863 | return {"ema_decay": ema_unet.decay} | ||
864 | return {} | ||
870 | 865 | ||
871 | loop = partial( | 866 | loss_step_ = partial( |
872 | loss_step, | 867 | loss_step, |
873 | vae, | 868 | vae, |
874 | noise_scheduler, | 869 | noise_scheduler, |
@@ -879,8 +874,25 @@ def main(): | |||
879 | args.seed, | 874 | args.seed, |
880 | ) | 875 | ) |
881 | 876 | ||
882 | # We need to initialize the trackers we use, and also store our configuration. | 877 | checkpointer = Checkpointer( |
883 | # The trackers initializes automatically on the main process. | 878 | weight_dtype=weight_dtype, |
879 | datamodule=datamodule, | ||
880 | accelerator=accelerator, | ||
881 | vae=vae, | ||
882 | unet=unet, | ||
883 | ema_unet=ema_unet, | ||
884 | tokenizer=tokenizer, | ||
885 | text_encoder=text_encoder, | ||
886 | scheduler=checkpoint_scheduler, | ||
887 | output_dir=basepath, | ||
888 | placeholder_token=args.placeholder_token, | ||
889 | placeholder_token_id=placeholder_token_id, | ||
890 | sample_image_size=args.sample_image_size, | ||
891 | sample_batch_size=args.sample_batch_size, | ||
892 | sample_batches=args.sample_batches, | ||
893 | seed=args.seed | ||
894 | ) | ||
895 | |||
884 | if accelerator.is_main_process: | 896 | if accelerator.is_main_process: |
885 | config = vars(args).copy() | 897 | config = vars(args).copy() |
886 | config["initializer_token"] = " ".join(config["initializer_token"]) | 898 | config["initializer_token"] = " ".join(config["initializer_token"]) |
@@ -898,9 +910,9 @@ def main(): | |||
898 | optimizer, | 910 | optimizer, |
899 | train_dataloader, | 911 | train_dataloader, |
900 | val_dataloader, | 912 | val_dataloader, |
901 | loop, | 913 | loss_step_, |
902 | on_train=tokenizer.train, | 914 | on_train=on_train, |
903 | on_eval=tokenizer.eval, | 915 | on_eval=on_eval, |
904 | on_before_optimize=on_before_optimize, | 916 | on_before_optimize=on_before_optimize, |
905 | on_after_optimize=on_after_optimize, | 917 | on_after_optimize=on_after_optimize, |
906 | ) | 918 | ) |
@@ -909,182 +921,28 @@ def main(): | |||
909 | plt.savefig(basepath.joinpath("lr.png"), dpi=300) | 921 | plt.savefig(basepath.joinpath("lr.png"), dpi=300) |
910 | plt.close() | 922 | plt.close() |
911 | 923 | ||
912 | quit() | 924 | return |
913 | |||
914 | # Train! | ||
915 | total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | ||
916 | |||
917 | logger.info("***** Running training *****") | ||
918 | logger.info(f" Num Epochs = {num_epochs}") | ||
919 | logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | ||
920 | logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | ||
921 | logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | ||
922 | logger.info(f" Total optimization steps = {args.max_train_steps}") | ||
923 | # Only show the progress bar once on each machine. | ||
924 | |||
925 | global_step = 0 | ||
926 | |||
927 | avg_loss = AverageMeter() | ||
928 | avg_acc = AverageMeter() | ||
929 | 925 | ||
930 | avg_loss_val = AverageMeter() | 926 | train_loop( |
931 | avg_acc_val = AverageMeter() | ||
932 | |||
933 | max_acc_val = 0.0 | ||
934 | |||
935 | checkpointer = Checkpointer( | ||
936 | weight_dtype=weight_dtype, | ||
937 | datamodule=datamodule, | ||
938 | accelerator=accelerator, | 927 | accelerator=accelerator, |
939 | vae=vae, | 928 | optimizer=optimizer, |
940 | unet=unet, | 929 | lr_scheduler=lr_scheduler, |
941 | ema_unet=ema_unet, | 930 | model=unet, |
942 | tokenizer=tokenizer, | 931 | checkpointer=checkpointer, |
943 | text_encoder=text_encoder, | 932 | train_dataloader=train_dataloader, |
944 | scheduler=checkpoint_scheduler, | 933 | val_dataloader=val_dataloader, |
945 | output_dir=basepath, | 934 | loss_step=loss_step_, |
946 | placeholder_token=args.placeholder_token, | 935 | sample_frequency=args.sample_frequency, |
947 | placeholder_token_id=placeholder_token_id, | 936 | sample_steps=args.sample_steps, |
948 | sample_image_size=args.sample_image_size, | 937 | checkpoint_frequency=args.checkpoint_frequency, |
949 | sample_batch_size=args.sample_batch_size, | 938 | global_step_offset=0, |
950 | sample_batches=args.sample_batches, | 939 | gradient_accumulation_steps=args.gradient_accumulation_steps, |
951 | seed=args.seed | 940 | num_epochs=args.num_train_epochs, |
952 | ) | 941 | on_log=on_log, |
953 | 942 | on_train=on_train, | |
954 | local_progress_bar = tqdm( | 943 | on_after_optimize=on_after_optimize, |
955 | range(num_update_steps_per_epoch + num_val_steps_per_epoch), | 944 | on_eval=on_eval |
956 | disable=not accelerator.is_local_main_process, | ||
957 | dynamic_ncols=True | ||
958 | ) | ||
959 | local_progress_bar.set_description(f"Epoch 1 / {num_epochs}") | ||
960 | |||
961 | global_progress_bar = tqdm( | ||
962 | range(args.max_train_steps + val_steps), | ||
963 | disable=not accelerator.is_local_main_process, | ||
964 | dynamic_ncols=True | ||
965 | ) | 945 | ) |
966 | global_progress_bar.set_description("Total progress") | ||
967 | |||
968 | try: | ||
969 | for epoch in range(num_epochs): | ||
970 | if accelerator.is_main_process: | ||
971 | if epoch % args.sample_frequency == 0: | ||
972 | checkpointer.save_samples(global_step, args.sample_steps) | ||
973 | |||
974 | local_progress_bar.set_description(f"Epoch {epoch + 1} / {num_epochs}") | ||
975 | local_progress_bar.reset() | ||
976 | |||
977 | unet.train() | ||
978 | if epoch < args.train_text_encoder_epochs: | ||
979 | text_encoder.train() | ||
980 | elif epoch == args.train_text_encoder_epochs: | ||
981 | text_encoder.requires_grad_(False) | ||
982 | |||
983 | with on_train(): | ||
984 | for step, batch in enumerate(train_dataloader): | ||
985 | with accelerator.accumulate(unet): | ||
986 | loss, acc, bsz = loop(step, batch) | ||
987 | |||
988 | accelerator.backward(loss) | ||
989 | |||
990 | on_before_optimize() | ||
991 | |||
992 | optimizer.step() | ||
993 | if not accelerator.optimizer_step_was_skipped: | ||
994 | lr_scheduler.step() | ||
995 | if args.use_ema: | ||
996 | ema_unet.step(unet.parameters()) | ||
997 | optimizer.zero_grad(set_to_none=True) | ||
998 | |||
999 | avg_loss.update(loss.detach_(), bsz) | ||
1000 | avg_acc.update(acc.detach_(), bsz) | ||
1001 | |||
1002 | # Checks if the accelerator has performed an optimization step behind the scenes | ||
1003 | if accelerator.sync_gradients: | ||
1004 | on_after_optimize(lr_scheduler.get_last_lr()[0]) | ||
1005 | |||
1006 | local_progress_bar.update(1) | ||
1007 | global_progress_bar.update(1) | ||
1008 | |||
1009 | global_step += 1 | ||
1010 | |||
1011 | logs = { | ||
1012 | "train/loss": avg_loss.avg.item(), | ||
1013 | "train/acc": avg_acc.avg.item(), | ||
1014 | "train/cur_loss": loss.item(), | ||
1015 | "train/cur_acc": acc.item(), | ||
1016 | "lr": lr_scheduler.get_last_lr()[0] | ||
1017 | } | ||
1018 | if args.use_ema: | ||
1019 | logs["ema_decay"] = 1 - ema_unet.decay | ||
1020 | |||
1021 | accelerator.log(logs, step=global_step) | ||
1022 | |||
1023 | local_progress_bar.set_postfix(**logs) | ||
1024 | |||
1025 | if global_step >= args.max_train_steps: | ||
1026 | break | ||
1027 | |||
1028 | accelerator.wait_for_everyone() | ||
1029 | |||
1030 | unet.eval() | ||
1031 | text_encoder.eval() | ||
1032 | |||
1033 | cur_loss_val = AverageMeter() | ||
1034 | cur_acc_val = AverageMeter() | ||
1035 | |||
1036 | with torch.inference_mode(): | ||
1037 | with on_eval(): | ||
1038 | for step, batch in enumerate(val_dataloader): | ||
1039 | loss, acc, bsz = loop(step, batch, True) | ||
1040 | |||
1041 | loss = loss.detach_() | ||
1042 | acc = acc.detach_() | ||
1043 | |||
1044 | cur_loss_val.update(loss, bsz) | ||
1045 | cur_acc_val.update(acc, bsz) | ||
1046 | |||
1047 | avg_loss_val.update(loss, bsz) | ||
1048 | avg_acc_val.update(acc, bsz) | ||
1049 | |||
1050 | local_progress_bar.update(1) | ||
1051 | global_progress_bar.update(1) | ||
1052 | |||
1053 | logs = { | ||
1054 | "val/loss": avg_loss_val.avg.item(), | ||
1055 | "val/acc": avg_acc_val.avg.item(), | ||
1056 | "val/cur_loss": loss.item(), | ||
1057 | "val/cur_acc": acc.item(), | ||
1058 | } | ||
1059 | local_progress_bar.set_postfix(**logs) | ||
1060 | |||
1061 | logs["val/cur_loss"] = cur_loss_val.avg.item() | ||
1062 | logs["val/cur_acc"] = cur_acc_val.avg.item() | ||
1063 | |||
1064 | accelerator.log(logs, step=global_step) | ||
1065 | |||
1066 | local_progress_bar.clear() | ||
1067 | global_progress_bar.clear() | ||
1068 | |||
1069 | if accelerator.is_main_process: | ||
1070 | if avg_acc_val.avg.item() > max_acc_val: | ||
1071 | accelerator.print( | ||
1072 | f"Global step {global_step}: Validation accuracy reached new maximum: {max_acc_val:.2e} -> {avg_acc_val.avg.item():.2e}") | ||
1073 | max_acc_val = avg_acc_val.avg.item() | ||
1074 | |||
1075 | # Create the pipeline using using the trained modules and save it. | ||
1076 | if accelerator.is_main_process: | ||
1077 | print("Finished! Saving final checkpoint and resume state.") | ||
1078 | checkpointer.save_samples(global_step, args.sample_steps) | ||
1079 | checkpointer.save_model() | ||
1080 | accelerator.end_training() | ||
1081 | |||
1082 | except KeyboardInterrupt: | ||
1083 | if accelerator.is_main_process: | ||
1084 | print("Interrupted, saving checkpoint and resume state...") | ||
1085 | checkpointer.save_model() | ||
1086 | accelerator.end_training() | ||
1087 | quit() | ||
1088 | 946 | ||
1089 | 947 | ||
1090 | if __name__ == "__main__": | 948 | if __name__ == "__main__": |
diff --git a/train_ti.py b/train_ti.py index 3f4e739..3a55f40 100644 --- a/train_ti.py +++ b/train_ti.py | |||
@@ -1,31 +1,15 @@ | |||
1 | import argparse | 1 | import argparse |
2 | import math | ||
3 | import datetime | ||
4 | import logging | ||
5 | from functools import partial | ||
6 | from pathlib import Path | ||
7 | from contextlib import contextmanager, nullcontext | ||
8 | 2 | ||
9 | import torch | 3 | import torch |
10 | import torch.utils.checkpoint | 4 | import torch.utils.checkpoint |
11 | 5 | ||
12 | from accelerate import Accelerator | ||
13 | from accelerate.logging import get_logger | 6 | from accelerate.logging import get_logger |
14 | from accelerate.utils import LoggerType, set_seed | 7 | |
15 | from diffusers import AutoencoderKL, DDPMScheduler, DPMSolverMultistepScheduler, UNet2DConditionModel | 8 | from util import load_config |
16 | import matplotlib.pyplot as plt | 9 | from data.csv import VlpnDataItem |
17 | from tqdm.auto import tqdm | 10 | from training.common import train_setup |
18 | from transformers import CLIPTextModel | 11 | from training.modules.ti import train_ti |
19 | from slugify import slugify | 12 | from training.util import save_args |
20 | |||
21 | from util import load_config, load_embeddings_from_dir | ||
22 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | ||
23 | from data.csv import VlpnDataModule, VlpnDataItem | ||
24 | from training.common import loss_step, train_loop, generate_class_images, get_scheduler | ||
25 | from training.lr import LRFinder | ||
26 | from training.util import AverageMeter, CheckpointerBase, EMAModel, save_args | ||
27 | from models.clip.embeddings import patch_managed_embeddings | ||
28 | from models.clip.tokenizer import MultiCLIPTokenizer | ||
29 | 13 | ||
30 | logger = get_logger(__name__) | 14 | logger = get_logger(__name__) |
31 | 15 | ||
@@ -271,7 +255,7 @@ def parse_args(): | |||
271 | parser.add_argument( | 255 | parser.add_argument( |
272 | "--lr_min_lr", | 256 | "--lr_min_lr", |
273 | type=float, | 257 | type=float, |
274 | default=None, | 258 | default=0.04, |
275 | help="Minimum learning rate in the lr scheduler." | 259 | help="Minimum learning rate in the lr scheduler." |
276 | ) | 260 | ) |
277 | parser.add_argument( | 261 | parser.add_argument( |
@@ -401,19 +385,19 @@ def parse_args(): | |||
401 | help="The weight of prior preservation loss." | 385 | help="The weight of prior preservation loss." |
402 | ) | 386 | ) |
403 | parser.add_argument( | 387 | parser.add_argument( |
404 | "--decay_target", | 388 | "--emb_decay_target", |
405 | default=None, | 389 | default=0.4, |
406 | type=float, | 390 | type=float, |
407 | help="Embedding decay target." | 391 | help="Embedding decay target." |
408 | ) | 392 | ) |
409 | parser.add_argument( | 393 | parser.add_argument( |
410 | "--decay_factor", | 394 | "--emb_decay_factor", |
411 | default=1, | 395 | default=1, |
412 | type=float, | 396 | type=float, |
413 | help="Embedding decay factor." | 397 | help="Embedding decay factor." |
414 | ) | 398 | ) |
415 | parser.add_argument( | 399 | parser.add_argument( |
416 | "--decay_start", | 400 | "--emb_decay_start", |
417 | default=1e-4, | 401 | default=1e-4, |
418 | type=float, | 402 | type=float, |
419 | help="Embedding decay start offset." | 403 | help="Embedding decay start offset." |
@@ -491,213 +475,10 @@ def parse_args(): | |||
491 | return args | 475 | return args |
492 | 476 | ||
493 | 477 | ||
494 | class Checkpointer(CheckpointerBase): | ||
495 | def __init__( | ||
496 | self, | ||
497 | weight_dtype, | ||
498 | accelerator: Accelerator, | ||
499 | vae: AutoencoderKL, | ||
500 | unet: UNet2DConditionModel, | ||
501 | tokenizer: MultiCLIPTokenizer, | ||
502 | text_encoder: CLIPTextModel, | ||
503 | ema_embeddings: EMAModel, | ||
504 | scheduler, | ||
505 | placeholder_token, | ||
506 | new_ids, | ||
507 | *args, | ||
508 | **kwargs | ||
509 | ): | ||
510 | super().__init__(*args, **kwargs) | ||
511 | |||
512 | self.weight_dtype = weight_dtype | ||
513 | self.accelerator = accelerator | ||
514 | self.vae = vae | ||
515 | self.unet = unet | ||
516 | self.tokenizer = tokenizer | ||
517 | self.text_encoder = text_encoder | ||
518 | self.ema_embeddings = ema_embeddings | ||
519 | self.scheduler = scheduler | ||
520 | self.placeholder_token = placeholder_token | ||
521 | self.new_ids = new_ids | ||
522 | |||
523 | @torch.no_grad() | ||
524 | def checkpoint(self, step, postfix): | ||
525 | print("Saving checkpoint for step %d..." % step) | ||
526 | |||
527 | checkpoints_path = self.output_dir.joinpath("checkpoints") | ||
528 | checkpoints_path.mkdir(parents=True, exist_ok=True) | ||
529 | |||
530 | text_encoder = self.accelerator.unwrap_model(self.text_encoder) | ||
531 | |||
532 | ema_context = self.ema_embeddings.apply_temporary( | ||
533 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) if self.ema_embeddings is not None else nullcontext() | ||
534 | |||
535 | with ema_context: | ||
536 | for (token, ids) in zip(self.placeholder_token, self.new_ids): | ||
537 | text_encoder.text_model.embeddings.save_embed( | ||
538 | ids, | ||
539 | checkpoints_path.joinpath(f"{slugify(token)}_{step}_{postfix}.bin") | ||
540 | ) | ||
541 | |||
542 | del text_encoder | ||
543 | |||
544 | @torch.no_grad() | ||
545 | def save_samples(self, step, num_inference_steps, guidance_scale=7.5, eta=0.0): | ||
546 | text_encoder = self.accelerator.unwrap_model(self.text_encoder) | ||
547 | |||
548 | ema_context = self.ema_embeddings.apply_temporary( | ||
549 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) if self.ema_embeddings is not None else nullcontext() | ||
550 | |||
551 | with ema_context: | ||
552 | orig_dtype = text_encoder.dtype | ||
553 | text_encoder.to(dtype=self.weight_dtype) | ||
554 | |||
555 | pipeline = VlpnStableDiffusion( | ||
556 | text_encoder=text_encoder, | ||
557 | vae=self.vae, | ||
558 | unet=self.unet, | ||
559 | tokenizer=self.tokenizer, | ||
560 | scheduler=self.scheduler, | ||
561 | ).to(self.accelerator.device) | ||
562 | pipeline.set_progress_bar_config(dynamic_ncols=True) | ||
563 | |||
564 | super().save_samples(pipeline, step, num_inference_steps, guidance_scale, eta) | ||
565 | |||
566 | text_encoder.to(dtype=orig_dtype) | ||
567 | |||
568 | del text_encoder | ||
569 | del pipeline | ||
570 | |||
571 | if torch.cuda.is_available(): | ||
572 | torch.cuda.empty_cache() | ||
573 | |||
574 | |||
575 | def main(): | 478 | def main(): |
576 | args = parse_args() | 479 | args = parse_args() |
577 | 480 | ||
578 | global_step_offset = args.global_step | 481 | def data_filter(item: VlpnDataItem): |
579 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | ||
580 | basepath = Path(args.output_dir).joinpath(slugify(args.project), now) | ||
581 | basepath.mkdir(parents=True, exist_ok=True) | ||
582 | |||
583 | accelerator = Accelerator( | ||
584 | log_with=LoggerType.TENSORBOARD, | ||
585 | logging_dir=f"{basepath}", | ||
586 | gradient_accumulation_steps=args.gradient_accumulation_steps, | ||
587 | mixed_precision=args.mixed_precision | ||
588 | ) | ||
589 | |||
590 | logging.basicConfig(filename=basepath.joinpath("log.txt"), level=logging.DEBUG) | ||
591 | |||
592 | args.seed = args.seed or (torch.random.seed() >> 32) | ||
593 | set_seed(args.seed) | ||
594 | |||
595 | save_args(basepath, args) | ||
596 | |||
597 | # Load the tokenizer and add the placeholder token as a additional special token | ||
598 | if args.tokenizer_name: | ||
599 | tokenizer = MultiCLIPTokenizer.from_pretrained(args.tokenizer_name) | ||
600 | elif args.pretrained_model_name_or_path: | ||
601 | tokenizer = MultiCLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') | ||
602 | tokenizer.set_use_vector_shuffle(args.vector_shuffle) | ||
603 | tokenizer.set_dropout(args.vector_dropout) | ||
604 | |||
605 | # Load models and create wrapper for stable diffusion | ||
606 | text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') | ||
607 | vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') | ||
608 | unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') | ||
609 | noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder='scheduler') | ||
610 | checkpoint_scheduler = DPMSolverMultistepScheduler.from_pretrained( | ||
611 | args.pretrained_model_name_or_path, subfolder='scheduler') | ||
612 | |||
613 | vae.enable_slicing() | ||
614 | vae.set_use_memory_efficient_attention_xformers(True) | ||
615 | unet.set_use_memory_efficient_attention_xformers(True) | ||
616 | |||
617 | if args.gradient_checkpointing: | ||
618 | unet.enable_gradient_checkpointing() | ||
619 | text_encoder.gradient_checkpointing_enable() | ||
620 | |||
621 | embeddings = patch_managed_embeddings(text_encoder) | ||
622 | ema_embeddings = None | ||
623 | |||
624 | if args.embeddings_dir is not None: | ||
625 | embeddings_dir = Path(args.embeddings_dir) | ||
626 | if not embeddings_dir.exists() or not embeddings_dir.is_dir(): | ||
627 | raise ValueError("--embeddings_dir must point to an existing directory") | ||
628 | |||
629 | added_tokens, added_ids = load_embeddings_from_dir(tokenizer, embeddings, embeddings_dir) | ||
630 | print(f"Added {len(added_tokens)} tokens from embeddings dir: {list(zip(added_tokens, added_ids))}") | ||
631 | |||
632 | # Convert the initializer_token, placeholder_token to ids | ||
633 | initializer_token_ids = [ | ||
634 | tokenizer.encode(token, add_special_tokens=False) | ||
635 | for token in args.initializer_token | ||
636 | ] | ||
637 | |||
638 | new_ids = tokenizer.add_multi_tokens(args.placeholder_token, args.num_vectors) | ||
639 | embeddings.resize(len(tokenizer)) | ||
640 | |||
641 | for (new_id, init_ids) in zip(new_ids, initializer_token_ids): | ||
642 | embeddings.add_embed(new_id, init_ids) | ||
643 | |||
644 | init_ratios = [f"{len(init_ids)} / {len(new_id)}" for new_id, init_ids in zip(new_ids, initializer_token_ids)] | ||
645 | |||
646 | print(f"Added {len(new_ids)} new tokens: {list(zip(args.placeholder_token, new_ids, init_ratios))}") | ||
647 | |||
648 | if args.use_ema: | ||
649 | ema_embeddings = EMAModel( | ||
650 | text_encoder.text_model.embeddings.temp_token_embedding.parameters(), | ||
651 | inv_gamma=args.ema_inv_gamma, | ||
652 | power=args.ema_power, | ||
653 | max_value=args.ema_max_decay, | ||
654 | ) | ||
655 | |||
656 | vae.requires_grad_(False) | ||
657 | unet.requires_grad_(False) | ||
658 | |||
659 | text_encoder.text_model.encoder.requires_grad_(False) | ||
660 | text_encoder.text_model.final_layer_norm.requires_grad_(False) | ||
661 | text_encoder.text_model.embeddings.position_embedding.requires_grad_(False) | ||
662 | text_encoder.text_model.embeddings.token_embedding.requires_grad_(False) | ||
663 | |||
664 | if args.scale_lr: | ||
665 | args.learning_rate = ( | ||
666 | args.learning_rate * args.gradient_accumulation_steps * | ||
667 | args.train_batch_size * accelerator.num_processes | ||
668 | ) | ||
669 | |||
670 | if args.find_lr: | ||
671 | args.learning_rate = 1e-5 | ||
672 | |||
673 | # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | ||
674 | if args.use_8bit_adam: | ||
675 | try: | ||
676 | import bitsandbytes as bnb | ||
677 | except ImportError: | ||
678 | raise ImportError("To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`.") | ||
679 | |||
680 | optimizer_class = bnb.optim.AdamW8bit | ||
681 | else: | ||
682 | optimizer_class = torch.optim.AdamW | ||
683 | |||
684 | # Initialize the optimizer | ||
685 | optimizer = optimizer_class( | ||
686 | text_encoder.text_model.embeddings.temp_token_embedding.parameters(), # only optimize the embeddings | ||
687 | lr=args.learning_rate, | ||
688 | betas=(args.adam_beta1, args.adam_beta2), | ||
689 | weight_decay=args.adam_weight_decay, | ||
690 | eps=args.adam_epsilon, | ||
691 | amsgrad=args.adam_amsgrad, | ||
692 | ) | ||
693 | |||
694 | weight_dtype = torch.float32 | ||
695 | if args.mixed_precision == "fp16": | ||
696 | weight_dtype = torch.float16 | ||
697 | elif args.mixed_precision == "bf16": | ||
698 | weight_dtype = torch.bfloat16 | ||
699 | |||
700 | def keyword_filter(item: VlpnDataItem): | ||
701 | cond1 = any( | 482 | cond1 = any( |
702 | keyword in part | 483 | keyword in part |
703 | for keyword in args.placeholder_token | 484 | for keyword in args.placeholder_token |
@@ -710,198 +491,78 @@ def main(): | |||
710 | ) | 491 | ) |
711 | return cond1 and cond3 and cond4 | 492 | return cond1 and cond3 and cond4 |
712 | 493 | ||
713 | datamodule = VlpnDataModule( | 494 | setup = train_setup( |
495 | output_dir=args.output_dir, | ||
496 | project=args.project, | ||
497 | pretrained_model_name_or_path=args.pretrained_model_name_or_path, | ||
498 | learning_rate=args.learning_rate, | ||
714 | data_file=args.train_data_file, | 499 | data_file=args.train_data_file, |
715 | batch_size=args.train_batch_size, | 500 | gradient_accumulation_steps=args.gradient_accumulation_steps, |
716 | tokenizer=tokenizer, | 501 | mixed_precision=args.mixed_precision, |
717 | class_subdir=args.class_image_dir, | 502 | seed=args.seed, |
503 | vector_shuffle=args.vector_shuffle, | ||
504 | vector_dropout=args.vector_dropout, | ||
505 | gradient_checkpointing=args.gradient_checkpointing, | ||
506 | embeddings_dir=args.embeddings_dir, | ||
507 | placeholder_token=args.placeholder_token, | ||
508 | initializer_token=args.initializer_token, | ||
509 | num_vectors=args.num_vectors, | ||
510 | scale_lr=args.scale_lr, | ||
511 | use_8bit_adam=args.use_8bit_adam, | ||
512 | train_batch_size=args.train_batch_size, | ||
513 | class_image_dir=args.class_image_dir, | ||
718 | num_class_images=args.num_class_images, | 514 | num_class_images=args.num_class_images, |
719 | size=args.resolution, | 515 | resolution=args.resolution, |
720 | num_buckets=args.num_buckets, | 516 | num_buckets=args.num_buckets, |
721 | progressive_buckets=args.progressive_buckets, | 517 | progressive_buckets=args.progressive_buckets, |
722 | bucket_step_size=args.bucket_step_size, | 518 | bucket_step_size=args.bucket_step_size, |
723 | bucket_max_pixels=args.bucket_max_pixels, | 519 | bucket_max_pixels=args.bucket_max_pixels, |
724 | dropout=args.tag_dropout, | 520 | tag_dropout=args.tag_dropout, |
725 | shuffle=not args.no_tag_shuffle, | 521 | tag_shuffle=not args.no_tag_shuffle, |
726 | template_key=args.train_data_template, | 522 | data_template=args.train_data_template, |
727 | valid_set_size=args.valid_set_size, | 523 | valid_set_size=args.valid_set_size, |
728 | valid_set_repeat=args.valid_set_repeat, | 524 | valid_set_repeat=args.valid_set_repeat, |
729 | num_workers=args.dataloader_num_workers, | 525 | data_filter=data_filter, |
730 | seed=args.seed, | 526 | sample_image_size=args.sample_image_size, |
731 | filter=keyword_filter, | 527 | sample_batch_size=args.sample_batch_size, |
732 | dtype=weight_dtype | 528 | sample_steps=args.sample_steps, |
733 | ) | ||
734 | datamodule.setup() | ||
735 | |||
736 | train_dataloader = datamodule.train_dataloader | ||
737 | val_dataloader = datamodule.val_dataloader | ||
738 | |||
739 | if args.num_class_images != 0: | ||
740 | generate_class_images( | ||
741 | accelerator, | ||
742 | text_encoder, | ||
743 | vae, | ||
744 | unet, | ||
745 | tokenizer, | ||
746 | checkpoint_scheduler, | ||
747 | datamodule.data_train, | ||
748 | args.sample_batch_size, | ||
749 | args.sample_image_size, | ||
750 | args.sample_steps | ||
751 | ) | ||
752 | |||
753 | if args.find_lr: | ||
754 | lr_scheduler = None | ||
755 | else: | ||
756 | lr_scheduler = get_scheduler( | ||
757 | args.lr_scheduler, | ||
758 | optimizer=optimizer, | ||
759 | min_lr=args.lr_min_lr, | ||
760 | lr=args.learning_rate, | ||
761 | warmup_func=args.lr_warmup_func, | ||
762 | annealing_func=args.lr_annealing_func, | ||
763 | warmup_exp=args.lr_warmup_exp, | ||
764 | annealing_exp=args.lr_annealing_exp, | ||
765 | cycles=args.lr_cycles, | ||
766 | train_epochs=args.num_train_epochs, | ||
767 | warmup_epochs=args.lr_warmup_epochs, | ||
768 | num_training_steps_per_epoch=len(train_dataloader), | ||
769 | gradient_accumulation_steps=args.gradient_accumulation_steps | ||
770 | ) | ||
771 | |||
772 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( | ||
773 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler | ||
774 | ) | 529 | ) |
775 | 530 | ||
776 | # Move vae and unet to device | 531 | save_args(setup.output_dir, args) |
777 | vae.to(accelerator.device, dtype=weight_dtype) | ||
778 | unet.to(accelerator.device, dtype=weight_dtype) | ||
779 | |||
780 | if args.use_ema: | ||
781 | ema_embeddings.to(accelerator.device) | ||
782 | 532 | ||
783 | # Keep vae and unet in eval mode as we don't train these | 533 | train_ti( |
784 | vae.eval() | 534 | setup=setup, |
785 | 535 | num_train_epochs=args.num_train_epochs, | |
786 | if args.gradient_checkpointing: | 536 | num_class_images=args.num_class_images, |
787 | unet.train() | 537 | prior_loss_weight=args.prior_loss_weight, |
788 | else: | 538 | use_ema=args.use_ema, |
789 | unet.eval() | 539 | ema_inv_gamma=args.ema_inv_gamma, |
790 | 540 | ema_power=args.ema_power, | |
791 | @contextmanager | 541 | ema_max_decay=args.ema_max_decay, |
792 | def on_train(): | 542 | adam_beta1=args.adam_beta1, |
793 | try: | 543 | adam_beta2=args.adam_beta2, |
794 | tokenizer.train() | 544 | adam_weight_decay=args.adam_weight_decay, |
795 | yield | 545 | adam_epsilon=args.adam_epsilon, |
796 | finally: | 546 | adam_amsgrad=args.adam_amsgrad, |
797 | pass | 547 | lr_scheduler=args.lr_scheduler, |
798 | 548 | lr_min_lr=args.lr_min_lr, | |
799 | @contextmanager | 549 | lr_warmup_func=args.lr_warmup_func, |
800 | def on_eval(): | 550 | lr_annealing_func=args.lr_annealing_func, |
801 | try: | 551 | lr_warmup_exp=args.lr_warmup_exp, |
802 | tokenizer.eval() | 552 | lr_annealing_exp=args.lr_annealing_exp, |
803 | 553 | lr_cycles=args.lr_cycles, | |
804 | ema_context = ema_embeddings.apply_temporary( | 554 | lr_warmup_epochs=args.lr_warmup_epochs, |
805 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) if args.use_ema else nullcontext() | 555 | emb_decay_target=args.emb_decay_target, |
806 | 556 | emb_decay_factor=args.emb_decay_factor, | |
807 | with ema_context: | 557 | emb_decay_start=args.emb_decay_start, |
808 | yield | ||
809 | finally: | ||
810 | pass | ||
811 | |||
812 | @torch.no_grad() | ||
813 | def on_after_optimize(lr: float): | ||
814 | text_encoder.text_model.embeddings.normalize( | ||
815 | args.decay_target, | ||
816 | min(1.0, max(0.0, args.decay_factor * ((lr - args.decay_start) / (args.learning_rate - args.decay_start)))) | ||
817 | ) | ||
818 | |||
819 | if args.use_ema: | ||
820 | ema_embeddings.step(text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
821 | |||
822 | def on_log(): | ||
823 | if args.use_ema: | ||
824 | return {"ema_decay": ema_embeddings.decay} | ||
825 | return {} | ||
826 | |||
827 | loss_step_ = partial( | ||
828 | loss_step, | ||
829 | vae, | ||
830 | noise_scheduler, | ||
831 | unet, | ||
832 | text_encoder, | ||
833 | args.num_class_images != 0, | ||
834 | args.prior_loss_weight, | ||
835 | args.seed, | ||
836 | ) | ||
837 | |||
838 | checkpointer = Checkpointer( | ||
839 | weight_dtype=weight_dtype, | ||
840 | datamodule=datamodule, | ||
841 | accelerator=accelerator, | ||
842 | vae=vae, | ||
843 | unet=unet, | ||
844 | tokenizer=tokenizer, | ||
845 | text_encoder=text_encoder, | ||
846 | ema_embeddings=ema_embeddings, | ||
847 | scheduler=checkpoint_scheduler, | ||
848 | placeholder_token=args.placeholder_token, | ||
849 | new_ids=new_ids, | ||
850 | output_dir=basepath, | ||
851 | sample_image_size=args.sample_image_size, | 558 | sample_image_size=args.sample_image_size, |
852 | sample_batch_size=args.sample_batch_size, | 559 | sample_batch_size=args.sample_batch_size, |
853 | sample_batches=args.sample_batches, | 560 | sample_batches=args.sample_batches, |
854 | seed=args.seed | 561 | sample_frequency=args.sample_frequency, |
855 | ) | 562 | sample_steps=args.sample_steps, |
856 | 563 | checkpoint_frequency=args.checkpoint_frequency, | |
857 | if accelerator.is_main_process: | 564 | global_step_offset=args.global_step, |
858 | config = vars(args).copy() | 565 | ) |
859 | config["initializer_token"] = " ".join(config["initializer_token"]) | ||
860 | config["placeholder_token"] = " ".join(config["placeholder_token"]) | ||
861 | config["num_vectors"] = " ".join([str(n) for n in config["num_vectors"]]) | ||
862 | if config["collection"] is not None: | ||
863 | config["collection"] = " ".join(config["collection"]) | ||
864 | if config["exclude_collections"] is not None: | ||
865 | config["exclude_collections"] = " ".join(config["exclude_collections"]) | ||
866 | accelerator.init_trackers("textual_inversion", config=config) | ||
867 | |||
868 | if args.find_lr: | ||
869 | lr_finder = LRFinder( | ||
870 | accelerator=accelerator, | ||
871 | optimizer=optimizer, | ||
872 | model=text_encoder, | ||
873 | train_dataloader=train_dataloader, | ||
874 | val_dataloader=val_dataloader, | ||
875 | loss_step=loss_step_, | ||
876 | on_train=on_train, | ||
877 | on_eval=on_eval, | ||
878 | on_after_optimize=on_after_optimize, | ||
879 | ) | ||
880 | lr_finder.run(num_epochs=100, end_lr=1e3) | ||
881 | |||
882 | plt.savefig(basepath.joinpath("lr.png"), dpi=300) | ||
883 | plt.close() | ||
884 | else: | ||
885 | train_loop( | ||
886 | accelerator=accelerator, | ||
887 | optimizer=optimizer, | ||
888 | lr_scheduler=lr_scheduler, | ||
889 | model=text_encoder, | ||
890 | checkpointer=checkpointer, | ||
891 | train_dataloader=train_dataloader, | ||
892 | val_dataloader=val_dataloader, | ||
893 | loss_step=loss_step_, | ||
894 | sample_frequency=args.sample_frequency, | ||
895 | sample_steps=args.sample_steps, | ||
896 | checkpoint_frequency=args.checkpoint_frequency, | ||
897 | global_step_offset=global_step_offset, | ||
898 | gradient_accumulation_steps=args.gradient_accumulation_steps, | ||
899 | num_epochs=args.num_train_epochs, | ||
900 | on_log=on_log, | ||
901 | on_train=on_train, | ||
902 | on_after_optimize=on_after_optimize, | ||
903 | on_eval=on_eval | ||
904 | ) | ||
905 | 566 | ||
906 | 567 | ||
907 | if __name__ == "__main__": | 568 | if __name__ == "__main__": |
diff --git a/training/common.py b/training/common.py index 180396e..73ce814 100644 --- a/training/common.py +++ b/training/common.py | |||
@@ -1,46 +1,77 @@ | |||
1 | import math | 1 | import math |
2 | from pathlib import Path | ||
2 | from contextlib import _GeneratorContextManager, nullcontext | 3 | from contextlib import _GeneratorContextManager, nullcontext |
3 | from typing import Callable, Any, Tuple, Union | 4 | from typing import Callable, Any, Tuple, Union, Literal, Optional, NamedTuple |
5 | import datetime | ||
6 | import logging | ||
4 | 7 | ||
5 | import torch | 8 | import torch |
6 | import torch.nn.functional as F | 9 | import torch.nn.functional as F |
7 | from torch.utils.data import DataLoader | 10 | from torch.utils.data import DataLoader |
8 | 11 | ||
9 | from accelerate import Accelerator | 12 | from accelerate import Accelerator |
10 | from transformers import CLIPTokenizer, CLIPTextModel | 13 | from accelerate.utils import LoggerType, set_seed |
11 | from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel | 14 | from transformers import CLIPTextModel |
15 | from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel, DPMSolverMultistepScheduler | ||
12 | from diffusers.optimization import get_scheduler as get_scheduler_, get_cosine_with_hard_restarts_schedule_with_warmup | 16 | from diffusers.optimization import get_scheduler as get_scheduler_, get_cosine_with_hard_restarts_schedule_with_warmup |
13 | 17 | ||
14 | from tqdm.auto import tqdm | 18 | from tqdm.auto import tqdm |
19 | from slugify import slugify | ||
15 | 20 | ||
21 | from data.csv import VlpnDataModule, VlpnDataItem | ||
22 | from util import load_embeddings_from_dir | ||
16 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | 23 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion |
24 | from models.clip.embeddings import patch_managed_embeddings | ||
17 | from models.clip.util import get_extended_embeddings | 25 | from models.clip.util import get_extended_embeddings |
26 | from models.clip.tokenizer import MultiCLIPTokenizer | ||
18 | from training.optimization import get_one_cycle_schedule | 27 | from training.optimization import get_one_cycle_schedule |
19 | from training.util import AverageMeter, CheckpointerBase | 28 | from training.util import AverageMeter, CheckpointerBase |
20 | 29 | ||
21 | 30 | ||
31 | class TrainingSetup(NamedTuple): | ||
32 | accelerator: Accelerator | ||
33 | tokenizer: MultiCLIPTokenizer | ||
34 | text_encoder: CLIPTextModel | ||
35 | vae: AutoencoderKL | ||
36 | unet: UNet2DConditionModel | ||
37 | noise_scheduler: DDPMScheduler | ||
38 | checkpoint_scheduler: DPMSolverMultistepScheduler | ||
39 | optimizer_class: Callable | ||
40 | learning_rate: float | ||
41 | weight_dtype: torch.dtype | ||
42 | output_dir: Path | ||
43 | seed: int | ||
44 | train_dataloader: DataLoader | ||
45 | val_dataloader: DataLoader | ||
46 | placeholder_token: list[str] | ||
47 | placeholder_token_ids: list[list[int]] | ||
48 | |||
49 | |||
22 | def noop(*args, **kwards): | 50 | def noop(*args, **kwards): |
23 | pass | 51 | pass |
24 | 52 | ||
25 | 53 | ||
54 | def noop_ctx(*args, **kwards): | ||
55 | return nullcontext() | ||
56 | |||
57 | |||
26 | def noop_on_log(): | 58 | def noop_on_log(): |
27 | return {} | 59 | return {} |
28 | 60 | ||
29 | 61 | ||
30 | def get_scheduler( | 62 | def get_scheduler( |
31 | id: str, | 63 | id: str, |
32 | min_lr: float, | ||
33 | lr: float, | ||
34 | warmup_func: str, | ||
35 | annealing_func: str, | ||
36 | warmup_exp: int, | ||
37 | annealing_exp: int, | ||
38 | cycles: int, | ||
39 | train_epochs: int, | ||
40 | warmup_epochs: int, | ||
41 | optimizer: torch.optim.Optimizer, | 64 | optimizer: torch.optim.Optimizer, |
42 | num_training_steps_per_epoch: int, | 65 | num_training_steps_per_epoch: int, |
43 | gradient_accumulation_steps: int, | 66 | gradient_accumulation_steps: int, |
67 | min_lr: float = 0.04, | ||
68 | warmup_func: str = "cos", | ||
69 | annealing_func: str = "cos", | ||
70 | warmup_exp: int = 1, | ||
71 | annealing_exp: int = 1, | ||
72 | cycles: int = 1, | ||
73 | train_epochs: int = 100, | ||
74 | warmup_epochs: int = 10, | ||
44 | ): | 75 | ): |
45 | num_training_steps_per_epoch = math.ceil( | 76 | num_training_steps_per_epoch = math.ceil( |
46 | num_training_steps_per_epoch / gradient_accumulation_steps | 77 | num_training_steps_per_epoch / gradient_accumulation_steps |
@@ -49,8 +80,6 @@ def get_scheduler( | |||
49 | num_warmup_steps = warmup_epochs * num_training_steps_per_epoch | 80 | num_warmup_steps = warmup_epochs * num_training_steps_per_epoch |
50 | 81 | ||
51 | if id == "one_cycle": | 82 | if id == "one_cycle": |
52 | min_lr = 0.04 if min_lr is None else min_lr / lr | ||
53 | |||
54 | lr_scheduler = get_one_cycle_schedule( | 83 | lr_scheduler = get_one_cycle_schedule( |
55 | optimizer=optimizer, | 84 | optimizer=optimizer, |
56 | num_training_steps=num_training_steps, | 85 | num_training_steps=num_training_steps, |
@@ -133,6 +162,196 @@ def generate_class_images( | |||
133 | torch.cuda.empty_cache() | 162 | torch.cuda.empty_cache() |
134 | 163 | ||
135 | 164 | ||
165 | def train_setup( | ||
166 | output_dir: str, | ||
167 | project: str, | ||
168 | pretrained_model_name_or_path: str, | ||
169 | learning_rate: float, | ||
170 | data_file: str, | ||
171 | gradient_accumulation_steps: int = 1, | ||
172 | mixed_precision: Literal["no", "fp16", "bf16"] = "no", | ||
173 | seed: Optional[int] = None, | ||
174 | vector_shuffle: Union[bool, Literal["all", "trailing", "leading", "between", "off"]] = "auto", | ||
175 | vector_dropout: float = 0.1, | ||
176 | gradient_checkpointing: bool = True, | ||
177 | embeddings_dir: Optional[str] = None, | ||
178 | placeholder_token: list[str] = [], | ||
179 | initializer_token: list[str] = [], | ||
180 | num_vectors: int = 1, | ||
181 | scale_lr: bool = False, | ||
182 | use_8bit_adam: bool = False, | ||
183 | train_batch_size: int = 1, | ||
184 | class_image_dir: Optional[str] = None, | ||
185 | num_class_images: int = 0, | ||
186 | resolution: int = 768, | ||
187 | num_buckets: int = 0, | ||
188 | progressive_buckets: bool = False, | ||
189 | bucket_step_size: int = 64, | ||
190 | bucket_max_pixels: Optional[int] = None, | ||
191 | tag_dropout: float = 0.1, | ||
192 | tag_shuffle: bool = True, | ||
193 | data_template: str = "template", | ||
194 | valid_set_size: Optional[int] = None, | ||
195 | valid_set_repeat: int = 1, | ||
196 | data_filter: Optional[Callable[[VlpnDataItem], bool]] = None, | ||
197 | sample_batch_size: int = 1, | ||
198 | sample_image_size: int = 768, | ||
199 | sample_steps: int = 20, | ||
200 | ) -> TrainingSetup: | ||
201 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | ||
202 | output_dir = Path(output_dir).joinpath(slugify(project), now) | ||
203 | output_dir.mkdir(parents=True, exist_ok=True) | ||
204 | |||
205 | accelerator = Accelerator( | ||
206 | log_with=LoggerType.TENSORBOARD, | ||
207 | logging_dir=f"{output_dir}", | ||
208 | gradient_accumulation_steps=gradient_accumulation_steps, | ||
209 | mixed_precision=mixed_precision | ||
210 | ) | ||
211 | |||
212 | logging.basicConfig(filename=output_dir.joinpath("log.txt"), level=logging.DEBUG) | ||
213 | |||
214 | seed = seed or (torch.random.seed() >> 32) | ||
215 | set_seed(seed) | ||
216 | |||
217 | # Load the tokenizer and add the placeholder token as a additional special token | ||
218 | tokenizer = MultiCLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder='tokenizer') | ||
219 | tokenizer.set_use_vector_shuffle(vector_shuffle) | ||
220 | tokenizer.set_dropout(vector_dropout) | ||
221 | |||
222 | # Load models and create wrapper for stable diffusion | ||
223 | text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path, subfolder='text_encoder') | ||
224 | vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder='vae') | ||
225 | unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder='unet') | ||
226 | noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder='scheduler') | ||
227 | checkpoint_scheduler = DPMSolverMultistepScheduler.from_pretrained( | ||
228 | pretrained_model_name_or_path, subfolder='scheduler') | ||
229 | |||
230 | vae.enable_slicing() | ||
231 | vae.set_use_memory_efficient_attention_xformers(True) | ||
232 | unet.set_use_memory_efficient_attention_xformers(True) | ||
233 | |||
234 | if gradient_checkpointing: | ||
235 | unet.enable_gradient_checkpointing() | ||
236 | text_encoder.gradient_checkpointing_enable() | ||
237 | |||
238 | embeddings = patch_managed_embeddings(text_encoder) | ||
239 | |||
240 | if embeddings_dir is not None: | ||
241 | embeddings_dir = Path(embeddings_dir) | ||
242 | if not embeddings_dir.exists() or not embeddings_dir.is_dir(): | ||
243 | raise ValueError("--embeddings_dir must point to an existing directory") | ||
244 | |||
245 | added_tokens, added_ids = load_embeddings_from_dir(tokenizer, embeddings, embeddings_dir) | ||
246 | print(f"Added {len(added_tokens)} tokens from embeddings dir: {list(zip(added_tokens, added_ids))}") | ||
247 | |||
248 | # Convert the initializer_token, placeholder_token to ids | ||
249 | initializer_token_ids = [ | ||
250 | tokenizer.encode(token, add_special_tokens=False) | ||
251 | for token in initializer_token | ||
252 | ] | ||
253 | |||
254 | placeholder_token_ids = tokenizer.add_multi_tokens(placeholder_token, num_vectors) | ||
255 | embeddings.resize(len(tokenizer)) | ||
256 | |||
257 | for (new_id, init_ids) in zip(placeholder_token_ids, initializer_token_ids): | ||
258 | embeddings.add_embed(new_id, init_ids) | ||
259 | |||
260 | init_ratios = [ | ||
261 | f"{len(init_ids)} / {len(new_id)}" | ||
262 | for new_id, init_ids in zip(placeholder_token_ids, initializer_token_ids) | ||
263 | ] | ||
264 | |||
265 | print(f"Added {len(placeholder_token_ids)} new tokens: {list(zip(placeholder_token, placeholder_token_ids, init_ratios))}") | ||
266 | |||
267 | vae.requires_grad_(False) | ||
268 | unet.requires_grad_(False) | ||
269 | text_encoder.requires_grad_(False) | ||
270 | |||
271 | if scale_lr: | ||
272 | learning_rate = ( | ||
273 | learning_rate * gradient_accumulation_steps * | ||
274 | train_batch_size * accelerator.num_processes | ||
275 | ) | ||
276 | |||
277 | # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | ||
278 | if use_8bit_adam: | ||
279 | try: | ||
280 | import bitsandbytes as bnb | ||
281 | except ImportError: | ||
282 | raise ImportError("To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`.") | ||
283 | |||
284 | optimizer_class = bnb.optim.AdamW8bit | ||
285 | else: | ||
286 | optimizer_class = torch.optim.AdamW | ||
287 | |||
288 | weight_dtype = torch.float32 | ||
289 | if mixed_precision == "fp16": | ||
290 | weight_dtype = torch.float16 | ||
291 | elif mixed_precision == "bf16": | ||
292 | weight_dtype = torch.bfloat16 | ||
293 | |||
294 | datamodule = VlpnDataModule( | ||
295 | data_file=data_file, | ||
296 | batch_size=train_batch_size, | ||
297 | tokenizer=tokenizer, | ||
298 | class_subdir=class_image_dir, | ||
299 | num_class_images=num_class_images, | ||
300 | size=resolution, | ||
301 | num_buckets=num_buckets, | ||
302 | progressive_buckets=progressive_buckets, | ||
303 | bucket_step_size=bucket_step_size, | ||
304 | bucket_max_pixels=bucket_max_pixels, | ||
305 | dropout=tag_dropout, | ||
306 | shuffle=tag_shuffle, | ||
307 | template_key=data_template, | ||
308 | valid_set_size=valid_set_size, | ||
309 | valid_set_repeat=valid_set_repeat, | ||
310 | seed=seed, | ||
311 | filter=data_filter, | ||
312 | dtype=weight_dtype | ||
313 | ) | ||
314 | datamodule.setup() | ||
315 | |||
316 | train_dataloader = datamodule.train_dataloader | ||
317 | val_dataloader = datamodule.val_dataloader | ||
318 | |||
319 | train_dataloader, val_dataloader = accelerator.prepare(train_dataloader, val_dataloader) | ||
320 | |||
321 | if num_class_images != 0: | ||
322 | generate_class_images( | ||
323 | accelerator, | ||
324 | text_encoder, | ||
325 | vae, | ||
326 | unet, | ||
327 | tokenizer, | ||
328 | checkpoint_scheduler, | ||
329 | datamodule.data_train, | ||
330 | sample_batch_size, | ||
331 | sample_image_size, | ||
332 | sample_steps | ||
333 | ) | ||
334 | |||
335 | return TrainingSetup( | ||
336 | accelerator=accelerator, | ||
337 | tokenizer=tokenizer, | ||
338 | text_encoder=text_encoder, | ||
339 | vae=vae, | ||
340 | unet=unet, | ||
341 | noise_scheduler=noise_scheduler, | ||
342 | checkpoint_scheduler=checkpoint_scheduler, | ||
343 | optimizer_class=optimizer_class, | ||
344 | learning_rate=learning_rate, | ||
345 | output_dir=output_dir, | ||
346 | weight_dtype=weight_dtype, | ||
347 | seed=seed, | ||
348 | train_dataloader=train_dataloader, | ||
349 | val_dataloader=val_dataloader, | ||
350 | placeholder_token=placeholder_token, | ||
351 | placeholder_token_ids=placeholder_token_ids | ||
352 | ) | ||
353 | |||
354 | |||
136 | def loss_step( | 355 | def loss_step( |
137 | vae: AutoencoderKL, | 356 | vae: AutoencoderKL, |
138 | noise_scheduler: DDPMScheduler, | 357 | noise_scheduler: DDPMScheduler, |
@@ -221,15 +440,14 @@ def train_loop( | |||
221 | sample_steps: int = 20, | 440 | sample_steps: int = 20, |
222 | checkpoint_frequency: int = 50, | 441 | checkpoint_frequency: int = 50, |
223 | global_step_offset: int = 0, | 442 | global_step_offset: int = 0, |
224 | gradient_accumulation_steps: int = 1, | ||
225 | num_epochs: int = 100, | 443 | num_epochs: int = 100, |
226 | on_log: Callable[[], dict[str, Any]] = noop_on_log, | 444 | on_log: Callable[[], dict[str, Any]] = noop_on_log, |
227 | on_train: Callable[[], _GeneratorContextManager] = nullcontext, | 445 | on_train: Callable[[int], _GeneratorContextManager] = noop_ctx, |
228 | on_before_optimize: Callable[[], None] = noop, | 446 | on_before_optimize: Callable[[int], None] = noop, |
229 | on_after_optimize: Callable[[float], None] = noop, | 447 | on_after_optimize: Callable[[float], None] = noop, |
230 | on_eval: Callable[[], _GeneratorContextManager] = nullcontext | 448 | on_eval: Callable[[], _GeneratorContextManager] = noop_ctx |
231 | ): | 449 | ): |
232 | num_training_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps) | 450 | num_training_steps_per_epoch = math.ceil(len(train_dataloader) / accelerator.gradient_accumulation_steps) |
233 | num_val_steps_per_epoch = len(val_dataloader) | 451 | num_val_steps_per_epoch = len(val_dataloader) |
234 | 452 | ||
235 | num_training_steps = num_training_steps_per_epoch * num_epochs | 453 | num_training_steps = num_training_steps_per_epoch * num_epochs |
@@ -273,14 +491,14 @@ def train_loop( | |||
273 | 491 | ||
274 | model.train() | 492 | model.train() |
275 | 493 | ||
276 | with on_train(): | 494 | with on_train(epoch): |
277 | for step, batch in enumerate(train_dataloader): | 495 | for step, batch in enumerate(train_dataloader): |
278 | with accelerator.accumulate(model): | 496 | with accelerator.accumulate(model): |
279 | loss, acc, bsz = loss_step(step, batch) | 497 | loss, acc, bsz = loss_step(step, batch) |
280 | 498 | ||
281 | accelerator.backward(loss) | 499 | accelerator.backward(loss) |
282 | 500 | ||
283 | on_before_optimize() | 501 | on_before_optimize(epoch) |
284 | 502 | ||
285 | optimizer.step() | 503 | optimizer.step() |
286 | lr_scheduler.step() | 504 | lr_scheduler.step() |
diff --git a/training/lr.py b/training/lr.py index 84e30a0..7584ba2 100644 --- a/training/lr.py +++ b/training/lr.py | |||
@@ -16,6 +16,10 @@ def noop(*args, **kwards): | |||
16 | pass | 16 | pass |
17 | 17 | ||
18 | 18 | ||
19 | def noop_ctx(*args, **kwards): | ||
20 | return nullcontext() | ||
21 | |||
22 | |||
19 | class LRFinder(): | 23 | class LRFinder(): |
20 | def __init__( | 24 | def __init__( |
21 | self, | 25 | self, |
@@ -25,10 +29,10 @@ class LRFinder(): | |||
25 | train_dataloader, | 29 | train_dataloader, |
26 | val_dataloader, | 30 | val_dataloader, |
27 | loss_fn: Union[Callable[[int, Any], Tuple[Any, Any, int]], Callable[[int, Any, bool], Tuple[Any, Any, int]]], | 31 | loss_fn: Union[Callable[[int, Any], Tuple[Any, Any, int]], Callable[[int, Any, bool], Tuple[Any, Any, int]]], |
28 | on_train: Callable[[], _GeneratorContextManager] = nullcontext, | 32 | on_train: Callable[[int], _GeneratorContextManager] = noop_ctx, |
29 | on_before_optimize: Callable[[], None] = noop, | 33 | on_before_optimize: Callable[[int], None] = noop, |
30 | on_after_optimize: Callable[[float], None] = noop, | 34 | on_after_optimize: Callable[[float], None] = noop, |
31 | on_eval: Callable[[], _GeneratorContextManager] = nullcontext | 35 | on_eval: Callable[[], _GeneratorContextManager] = noop_ctx |
32 | ): | 36 | ): |
33 | self.accelerator = accelerator | 37 | self.accelerator = accelerator |
34 | self.model = model | 38 | self.model = model |
@@ -86,7 +90,7 @@ class LRFinder(): | |||
86 | 90 | ||
87 | self.model.train() | 91 | self.model.train() |
88 | 92 | ||
89 | with self.on_train(): | 93 | with self.on_train(epoch): |
90 | for step, batch in enumerate(self.train_dataloader): | 94 | for step, batch in enumerate(self.train_dataloader): |
91 | if step >= num_train_batches: | 95 | if step >= num_train_batches: |
92 | break | 96 | break |
@@ -96,7 +100,7 @@ class LRFinder(): | |||
96 | 100 | ||
97 | self.accelerator.backward(loss) | 101 | self.accelerator.backward(loss) |
98 | 102 | ||
99 | self.on_before_optimize() | 103 | self.on_before_optimize(epoch) |
100 | 104 | ||
101 | self.optimizer.step() | 105 | self.optimizer.step() |
102 | lr_scheduler.step() | 106 | lr_scheduler.step() |
diff --git a/training/modules/dreambooth.py b/training/modules/dreambooth.py new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/training/modules/dreambooth.py | |||
diff --git a/training/modules/lora.py b/training/modules/lora.py new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/training/modules/lora.py | |||
diff --git a/training/modules/ti.py b/training/modules/ti.py new file mode 100644 index 0000000..2db6f88 --- /dev/null +++ b/training/modules/ti.py | |||
@@ -0,0 +1,284 @@ | |||
1 | from typing import Literal | ||
2 | from functools import partial | ||
3 | from contextlib import contextmanager, nullcontext | ||
4 | |||
5 | import torch | ||
6 | |||
7 | from slugify import slugify | ||
8 | |||
9 | from accelerate import Accelerator | ||
10 | from transformers import CLIPTextModel | ||
11 | from diffusers import AutoencoderKL, UNet2DConditionModel | ||
12 | |||
13 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | ||
14 | from models.clip.tokenizer import MultiCLIPTokenizer | ||
15 | |||
16 | from training.common import TrainingSetup, get_scheduler, train_loop, loss_step | ||
17 | from training.util import EMAModel, CheckpointerBase | ||
18 | |||
19 | |||
20 | class Checkpointer(CheckpointerBase): | ||
21 | def __init__( | ||
22 | self, | ||
23 | accelerator: Accelerator, | ||
24 | vae: AutoencoderKL, | ||
25 | unet: UNet2DConditionModel, | ||
26 | tokenizer: MultiCLIPTokenizer, | ||
27 | text_encoder: CLIPTextModel, | ||
28 | ema_embeddings: EMAModel, | ||
29 | weight_dtype: torch.dtype, | ||
30 | scheduler, | ||
31 | placeholder_token, | ||
32 | placeholder_token_ids, | ||
33 | *args, | ||
34 | **kwargs | ||
35 | ): | ||
36 | super().__init__(*args, **kwargs) | ||
37 | |||
38 | self.weight_dtype = weight_dtype | ||
39 | self.accelerator = accelerator | ||
40 | self.vae = vae | ||
41 | self.unet = unet | ||
42 | self.tokenizer = tokenizer | ||
43 | self.text_encoder = text_encoder | ||
44 | self.ema_embeddings = ema_embeddings | ||
45 | self.scheduler = scheduler | ||
46 | self.placeholder_token = placeholder_token | ||
47 | self.placeholder_token_ids = placeholder_token_ids | ||
48 | |||
49 | @torch.no_grad() | ||
50 | def checkpoint(self, step, postfix): | ||
51 | print("Saving checkpoint for step %d..." % step) | ||
52 | |||
53 | checkpoints_path = self.output_dir.joinpath("checkpoints") | ||
54 | checkpoints_path.mkdir(parents=True, exist_ok=True) | ||
55 | |||
56 | text_encoder = self.accelerator.unwrap_model(self.text_encoder) | ||
57 | |||
58 | ema_context = nullcontext() | ||
59 | if self.ema_embeddings is not None: | ||
60 | ema_context = self.ema_embeddings.apply_temporary( | ||
61 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
62 | |||
63 | with ema_context: | ||
64 | for (token, ids) in zip(self.placeholder_token, self.placeholder_token_ids): | ||
65 | text_encoder.text_model.embeddings.save_embed( | ||
66 | ids, | ||
67 | checkpoints_path.joinpath(f"{slugify(token)}_{step}_{postfix}.bin") | ||
68 | ) | ||
69 | |||
70 | del text_encoder | ||
71 | |||
72 | @torch.no_grad() | ||
73 | def save_samples(self, step, num_inference_steps, guidance_scale=7.5, eta=0.0): | ||
74 | text_encoder = self.accelerator.unwrap_model(self.text_encoder) | ||
75 | |||
76 | ema_context = nullcontext() | ||
77 | if self.ema_embeddings is not None: | ||
78 | ema_context = self.ema_embeddings.apply_temporary( | ||
79 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
80 | |||
81 | with ema_context: | ||
82 | orig_dtype = text_encoder.dtype | ||
83 | text_encoder.to(dtype=self.weight_dtype) | ||
84 | |||
85 | pipeline = VlpnStableDiffusion( | ||
86 | text_encoder=text_encoder, | ||
87 | vae=self.vae, | ||
88 | unet=self.unet, | ||
89 | tokenizer=self.tokenizer, | ||
90 | scheduler=self.scheduler, | ||
91 | ).to(self.accelerator.device) | ||
92 | pipeline.set_progress_bar_config(dynamic_ncols=True) | ||
93 | |||
94 | super().save_samples(pipeline, step, num_inference_steps, guidance_scale, eta) | ||
95 | |||
96 | text_encoder.to(dtype=orig_dtype) | ||
97 | |||
98 | del text_encoder | ||
99 | del pipeline | ||
100 | |||
101 | if torch.cuda.is_available(): | ||
102 | torch.cuda.empty_cache() | ||
103 | |||
104 | |||
105 | def train_ti( | ||
106 | setup: TrainingSetup, | ||
107 | num_train_epochs: int = 100, | ||
108 | num_class_images: int = 0, | ||
109 | prior_loss_weight: float = 1.0, | ||
110 | use_ema: bool = False, | ||
111 | ema_inv_gamma: float = 1.0, | ||
112 | ema_power: float = 4/5, | ||
113 | ema_max_decay: float = .9999, | ||
114 | adam_beta1: float = 0.9, | ||
115 | adam_beta2: float = 0.999, | ||
116 | adam_weight_decay: float = 0, | ||
117 | adam_epsilon: float = 1e-08, | ||
118 | adam_amsgrad: bool = False, | ||
119 | lr_scheduler: Literal[ | ||
120 | "linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup", "one_cycle" | ||
121 | ] = "one_cycle", | ||
122 | lr_min_lr: float = 0.04, | ||
123 | lr_warmup_func: Literal["linear", "cos"] = "cos", | ||
124 | lr_annealing_func: Literal["linear", "half_cos", "cos"] = "cos", | ||
125 | lr_warmup_exp: int = 1, | ||
126 | lr_annealing_exp: int = 1, | ||
127 | lr_cycles: int = 1, | ||
128 | lr_warmup_epochs: int = 10, | ||
129 | emb_decay_target: float = 0.4, | ||
130 | emb_decay_factor: float = 1, | ||
131 | emb_decay_start: float = 1e-4, | ||
132 | sample_image_size: int = 768, | ||
133 | sample_batch_size: int = 1, | ||
134 | sample_batches: int = 1, | ||
135 | sample_frequency: int = 10, | ||
136 | sample_steps: int = 20, | ||
137 | checkpoint_frequency: int = 50, | ||
138 | global_step_offset: int = 0, | ||
139 | ): | ||
140 | if use_ema: | ||
141 | ema_embeddings = EMAModel( | ||
142 | setup.text_encoder.text_model.embeddings.temp_token_embedding.parameters(), | ||
143 | inv_gamma=ema_inv_gamma, | ||
144 | power=ema_power, | ||
145 | max_value=ema_max_decay, | ||
146 | ) | ||
147 | else: | ||
148 | ema_embeddings = None | ||
149 | |||
150 | setup.text_encoder.requires_grad_(True) | ||
151 | setup.text_encoder.text_model.encoder.requires_grad_(False) | ||
152 | setup.text_encoder.text_model.final_layer_norm.requires_grad_(False) | ||
153 | setup.text_encoder.text_model.embeddings.position_embedding.requires_grad_(False) | ||
154 | setup.text_encoder.text_model.embeddings.token_embedding.requires_grad_(False) | ||
155 | |||
156 | # Initialize the optimizer | ||
157 | optimizer = setup.optimizer_class( | ||
158 | setup.text_encoder.text_model.embeddings.temp_token_embedding.parameters(), | ||
159 | lr=setup.learning_rate, | ||
160 | betas=(adam_beta1, adam_beta2), | ||
161 | weight_decay=adam_weight_decay, | ||
162 | eps=adam_epsilon, | ||
163 | amsgrad=adam_amsgrad, | ||
164 | ) | ||
165 | |||
166 | lr_scheduler = get_scheduler( | ||
167 | lr_scheduler, | ||
168 | optimizer=optimizer, | ||
169 | min_lr=lr_min_lr, | ||
170 | warmup_func=lr_warmup_func, | ||
171 | annealing_func=lr_annealing_func, | ||
172 | warmup_exp=lr_warmup_exp, | ||
173 | annealing_exp=lr_annealing_exp, | ||
174 | cycles=lr_cycles, | ||
175 | train_epochs=num_train_epochs, | ||
176 | warmup_epochs=lr_warmup_epochs, | ||
177 | num_training_steps_per_epoch=len(setup.train_dataloader), | ||
178 | gradient_accumulation_steps=setup.accelerator.gradient_accumulation_steps | ||
179 | ) | ||
180 | |||
181 | text_encoder, optimizer, lr_scheduler = setup.accelerator.prepare( | ||
182 | setup.text_encoder, optimizer, lr_scheduler | ||
183 | ) | ||
184 | |||
185 | # Move vae and unet to device | ||
186 | setup.vae.to(setup.accelerator.device, dtype=setup.weight_dtype) | ||
187 | setup.unet.to(setup.accelerator.device, dtype=setup.weight_dtype) | ||
188 | |||
189 | if use_ema: | ||
190 | ema_embeddings.to(setup.accelerator.device) | ||
191 | |||
192 | setup.unet.train() | ||
193 | |||
194 | @contextmanager | ||
195 | def on_train(epoch: int): | ||
196 | try: | ||
197 | setup.tokenizer.train() | ||
198 | yield | ||
199 | finally: | ||
200 | pass | ||
201 | |||
202 | @contextmanager | ||
203 | def on_eval(): | ||
204 | try: | ||
205 | setup.tokenizer.eval() | ||
206 | |||
207 | ema_context = nullcontext() | ||
208 | if use_ema: | ||
209 | ema_context = ema_embeddings.apply_temporary( | ||
210 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
211 | |||
212 | with ema_context: | ||
213 | yield | ||
214 | finally: | ||
215 | pass | ||
216 | |||
217 | @torch.no_grad() | ||
218 | def on_after_optimize(lr: float): | ||
219 | text_encoder.text_model.embeddings.normalize( | ||
220 | emb_decay_target, | ||
221 | min(1.0, max(0.0, emb_decay_factor * ((lr - emb_decay_start) / (setup.learning_rate - emb_decay_start)))) | ||
222 | ) | ||
223 | |||
224 | if use_ema: | ||
225 | ema_embeddings.step(text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
226 | |||
227 | def on_log(): | ||
228 | if use_ema: | ||
229 | return {"ema_decay": ema_embeddings.decay} | ||
230 | return {} | ||
231 | |||
232 | loss_step_ = partial( | ||
233 | loss_step, | ||
234 | setup.vae, | ||
235 | setup.noise_scheduler, | ||
236 | setup.unet, | ||
237 | text_encoder, | ||
238 | num_class_images != 0, | ||
239 | prior_loss_weight, | ||
240 | setup.seed, | ||
241 | ) | ||
242 | |||
243 | checkpointer = Checkpointer( | ||
244 | accelerator=setup.accelerator, | ||
245 | vae=setup.vae, | ||
246 | unet=setup.unet, | ||
247 | tokenizer=setup.tokenizer, | ||
248 | text_encoder=text_encoder, | ||
249 | ema_embeddings=ema_embeddings, | ||
250 | weight_dtype=setup.weight_dtype, | ||
251 | scheduler=setup.checkpoint_scheduler, | ||
252 | placeholder_token=setup.placeholder_token, | ||
253 | placeholder_token_ids=setup.placeholder_token_ids, | ||
254 | train_dataloader=setup.train_dataloader, | ||
255 | val_dataloader=setup.val_dataloader, | ||
256 | output_dir=setup.output_dir, | ||
257 | seed=setup.seed, | ||
258 | sample_image_size=sample_image_size, | ||
259 | sample_batch_size=sample_batch_size, | ||
260 | sample_batches=sample_batches | ||
261 | ) | ||
262 | |||
263 | if setup.accelerator.is_main_process: | ||
264 | setup.accelerator.init_trackers("textual_inversion") | ||
265 | |||
266 | train_loop( | ||
267 | accelerator=setup.accelerator, | ||
268 | optimizer=optimizer, | ||
269 | lr_scheduler=lr_scheduler, | ||
270 | model=text_encoder, | ||
271 | checkpointer=checkpointer, | ||
272 | train_dataloader=setup.train_dataloader, | ||
273 | val_dataloader=setup.val_dataloader, | ||
274 | loss_step=loss_step_, | ||
275 | sample_frequency=sample_frequency, | ||
276 | sample_steps=sample_steps, | ||
277 | checkpoint_frequency=checkpoint_frequency, | ||
278 | global_step_offset=global_step_offset, | ||
279 | num_epochs=num_train_epochs, | ||
280 | on_log=on_log, | ||
281 | on_train=on_train, | ||
282 | on_after_optimize=on_after_optimize, | ||
283 | on_eval=on_eval | ||
284 | ) | ||
diff --git a/training/util.py b/training/util.py index 0ec2032..cc4cdee 100644 --- a/training/util.py +++ b/training/util.py | |||
@@ -41,14 +41,16 @@ class AverageMeter: | |||
41 | class CheckpointerBase: | 41 | class CheckpointerBase: |
42 | def __init__( | 42 | def __init__( |
43 | self, | 43 | self, |
44 | datamodule, | 44 | train_dataloader, |
45 | val_dataloader, | ||
45 | output_dir: Path, | 46 | output_dir: Path, |
46 | sample_image_size: int, | 47 | sample_image_size: int, |
47 | sample_batches: int, | 48 | sample_batches: int, |
48 | sample_batch_size: int, | 49 | sample_batch_size: int, |
49 | seed: Optional[int] = None | 50 | seed: Optional[int] = None |
50 | ): | 51 | ): |
51 | self.datamodule = datamodule | 52 | self.train_dataloader = train_dataloader |
53 | self.val_dataloader = val_dataloader | ||
52 | self.output_dir = output_dir | 54 | self.output_dir = output_dir |
53 | self.sample_image_size = sample_image_size | 55 | self.sample_image_size = sample_image_size |
54 | self.seed = seed if seed is not None else torch.random.seed() | 56 | self.seed = seed if seed is not None else torch.random.seed() |
@@ -70,15 +72,16 @@ class CheckpointerBase: | |||
70 | ): | 72 | ): |
71 | samples_path = Path(self.output_dir).joinpath("samples") | 73 | samples_path = Path(self.output_dir).joinpath("samples") |
72 | 74 | ||
73 | train_data = self.datamodule.train_dataloader | ||
74 | val_data = self.datamodule.val_dataloader | ||
75 | |||
76 | generator = torch.Generator(device=pipeline.device).manual_seed(self.seed) | 75 | generator = torch.Generator(device=pipeline.device).manual_seed(self.seed) |
77 | 76 | ||
78 | grid_cols = min(self.sample_batch_size, 4) | 77 | grid_cols = min(self.sample_batch_size, 4) |
79 | grid_rows = (self.sample_batches * self.sample_batch_size) // grid_cols | 78 | grid_rows = (self.sample_batches * self.sample_batch_size) // grid_cols |
80 | 79 | ||
81 | for pool, data, gen in [("stable", val_data, generator), ("val", val_data, None), ("train", train_data, None)]: | 80 | for pool, data, gen in [ |
81 | ("stable", self.val_dataloader, generator), | ||
82 | ("val", self.val_dataloader, None), | ||
83 | ("train", self.train_dataloader, None) | ||
84 | ]: | ||
82 | all_samples = [] | 85 | all_samples = [] |
83 | file_path = samples_path.joinpath(pool, f"step_{step}.jpg") | 86 | file_path = samples_path.joinpath(pool, f"step_{step}.jpg") |
84 | file_path.parent.mkdir(parents=True, exist_ok=True) | 87 | file_path.parent.mkdir(parents=True, exist_ok=True) |