diff options
Diffstat (limited to 'training/common.py')
| -rw-r--r-- | training/common.py | 260 |
1 files changed, 239 insertions, 21 deletions
diff --git a/training/common.py b/training/common.py index 180396e..73ce814 100644 --- a/training/common.py +++ b/training/common.py | |||
| @@ -1,46 +1,77 @@ | |||
| 1 | import math | 1 | import math |
| 2 | from pathlib import Path | ||
| 2 | from contextlib import _GeneratorContextManager, nullcontext | 3 | from contextlib import _GeneratorContextManager, nullcontext |
| 3 | from typing import Callable, Any, Tuple, Union | 4 | from typing import Callable, Any, Tuple, Union, Literal, Optional, NamedTuple |
| 5 | import datetime | ||
| 6 | import logging | ||
| 4 | 7 | ||
| 5 | import torch | 8 | import torch |
| 6 | import torch.nn.functional as F | 9 | import torch.nn.functional as F |
| 7 | from torch.utils.data import DataLoader | 10 | from torch.utils.data import DataLoader |
| 8 | 11 | ||
| 9 | from accelerate import Accelerator | 12 | from accelerate import Accelerator |
| 10 | from transformers import CLIPTokenizer, CLIPTextModel | 13 | from accelerate.utils import LoggerType, set_seed |
| 11 | from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel | 14 | from transformers import CLIPTextModel |
| 15 | from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel, DPMSolverMultistepScheduler | ||
| 12 | from diffusers.optimization import get_scheduler as get_scheduler_, get_cosine_with_hard_restarts_schedule_with_warmup | 16 | from diffusers.optimization import get_scheduler as get_scheduler_, get_cosine_with_hard_restarts_schedule_with_warmup |
| 13 | 17 | ||
| 14 | from tqdm.auto import tqdm | 18 | from tqdm.auto import tqdm |
| 19 | from slugify import slugify | ||
| 15 | 20 | ||
| 21 | from data.csv import VlpnDataModule, VlpnDataItem | ||
| 22 | from util import load_embeddings_from_dir | ||
| 16 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | 23 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion |
| 24 | from models.clip.embeddings import patch_managed_embeddings | ||
| 17 | from models.clip.util import get_extended_embeddings | 25 | from models.clip.util import get_extended_embeddings |
| 26 | from models.clip.tokenizer import MultiCLIPTokenizer | ||
| 18 | from training.optimization import get_one_cycle_schedule | 27 | from training.optimization import get_one_cycle_schedule |
| 19 | from training.util import AverageMeter, CheckpointerBase | 28 | from training.util import AverageMeter, CheckpointerBase |
| 20 | 29 | ||
| 21 | 30 | ||
| 31 | class TrainingSetup(NamedTuple): | ||
| 32 | accelerator: Accelerator | ||
| 33 | tokenizer: MultiCLIPTokenizer | ||
| 34 | text_encoder: CLIPTextModel | ||
| 35 | vae: AutoencoderKL | ||
| 36 | unet: UNet2DConditionModel | ||
| 37 | noise_scheduler: DDPMScheduler | ||
| 38 | checkpoint_scheduler: DPMSolverMultistepScheduler | ||
| 39 | optimizer_class: Callable | ||
| 40 | learning_rate: float | ||
| 41 | weight_dtype: torch.dtype | ||
| 42 | output_dir: Path | ||
| 43 | seed: int | ||
| 44 | train_dataloader: DataLoader | ||
| 45 | val_dataloader: DataLoader | ||
| 46 | placeholder_token: list[str] | ||
| 47 | placeholder_token_ids: list[list[int]] | ||
| 48 | |||
| 49 | |||
| 22 | def noop(*args, **kwards): | 50 | def noop(*args, **kwards): |
| 23 | pass | 51 | pass |
| 24 | 52 | ||
| 25 | 53 | ||
| 54 | def noop_ctx(*args, **kwards): | ||
| 55 | return nullcontext() | ||
| 56 | |||
| 57 | |||
| 26 | def noop_on_log(): | 58 | def noop_on_log(): |
| 27 | return {} | 59 | return {} |
| 28 | 60 | ||
| 29 | 61 | ||
| 30 | def get_scheduler( | 62 | def get_scheduler( |
| 31 | id: str, | 63 | id: str, |
| 32 | min_lr: float, | ||
| 33 | lr: float, | ||
| 34 | warmup_func: str, | ||
| 35 | annealing_func: str, | ||
| 36 | warmup_exp: int, | ||
| 37 | annealing_exp: int, | ||
| 38 | cycles: int, | ||
| 39 | train_epochs: int, | ||
| 40 | warmup_epochs: int, | ||
| 41 | optimizer: torch.optim.Optimizer, | 64 | optimizer: torch.optim.Optimizer, |
| 42 | num_training_steps_per_epoch: int, | 65 | num_training_steps_per_epoch: int, |
| 43 | gradient_accumulation_steps: int, | 66 | gradient_accumulation_steps: int, |
| 67 | min_lr: float = 0.04, | ||
| 68 | warmup_func: str = "cos", | ||
| 69 | annealing_func: str = "cos", | ||
| 70 | warmup_exp: int = 1, | ||
| 71 | annealing_exp: int = 1, | ||
| 72 | cycles: int = 1, | ||
| 73 | train_epochs: int = 100, | ||
| 74 | warmup_epochs: int = 10, | ||
| 44 | ): | 75 | ): |
| 45 | num_training_steps_per_epoch = math.ceil( | 76 | num_training_steps_per_epoch = math.ceil( |
| 46 | num_training_steps_per_epoch / gradient_accumulation_steps | 77 | num_training_steps_per_epoch / gradient_accumulation_steps |
| @@ -49,8 +80,6 @@ def get_scheduler( | |||
| 49 | num_warmup_steps = warmup_epochs * num_training_steps_per_epoch | 80 | num_warmup_steps = warmup_epochs * num_training_steps_per_epoch |
| 50 | 81 | ||
| 51 | if id == "one_cycle": | 82 | if id == "one_cycle": |
| 52 | min_lr = 0.04 if min_lr is None else min_lr / lr | ||
| 53 | |||
| 54 | lr_scheduler = get_one_cycle_schedule( | 83 | lr_scheduler = get_one_cycle_schedule( |
| 55 | optimizer=optimizer, | 84 | optimizer=optimizer, |
| 56 | num_training_steps=num_training_steps, | 85 | num_training_steps=num_training_steps, |
| @@ -133,6 +162,196 @@ def generate_class_images( | |||
| 133 | torch.cuda.empty_cache() | 162 | torch.cuda.empty_cache() |
| 134 | 163 | ||
| 135 | 164 | ||
| 165 | def train_setup( | ||
| 166 | output_dir: str, | ||
| 167 | project: str, | ||
| 168 | pretrained_model_name_or_path: str, | ||
| 169 | learning_rate: float, | ||
| 170 | data_file: str, | ||
| 171 | gradient_accumulation_steps: int = 1, | ||
| 172 | mixed_precision: Literal["no", "fp16", "bf16"] = "no", | ||
| 173 | seed: Optional[int] = None, | ||
| 174 | vector_shuffle: Union[bool, Literal["all", "trailing", "leading", "between", "off"]] = "auto", | ||
| 175 | vector_dropout: float = 0.1, | ||
| 176 | gradient_checkpointing: bool = True, | ||
| 177 | embeddings_dir: Optional[str] = None, | ||
| 178 | placeholder_token: list[str] = [], | ||
| 179 | initializer_token: list[str] = [], | ||
| 180 | num_vectors: int = 1, | ||
| 181 | scale_lr: bool = False, | ||
| 182 | use_8bit_adam: bool = False, | ||
| 183 | train_batch_size: int = 1, | ||
| 184 | class_image_dir: Optional[str] = None, | ||
| 185 | num_class_images: int = 0, | ||
| 186 | resolution: int = 768, | ||
| 187 | num_buckets: int = 0, | ||
| 188 | progressive_buckets: bool = False, | ||
| 189 | bucket_step_size: int = 64, | ||
| 190 | bucket_max_pixels: Optional[int] = None, | ||
| 191 | tag_dropout: float = 0.1, | ||
| 192 | tag_shuffle: bool = True, | ||
| 193 | data_template: str = "template", | ||
| 194 | valid_set_size: Optional[int] = None, | ||
| 195 | valid_set_repeat: int = 1, | ||
| 196 | data_filter: Optional[Callable[[VlpnDataItem], bool]] = None, | ||
| 197 | sample_batch_size: int = 1, | ||
| 198 | sample_image_size: int = 768, | ||
| 199 | sample_steps: int = 20, | ||
| 200 | ) -> TrainingSetup: | ||
| 201 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | ||
| 202 | output_dir = Path(output_dir).joinpath(slugify(project), now) | ||
| 203 | output_dir.mkdir(parents=True, exist_ok=True) | ||
| 204 | |||
| 205 | accelerator = Accelerator( | ||
| 206 | log_with=LoggerType.TENSORBOARD, | ||
| 207 | logging_dir=f"{output_dir}", | ||
| 208 | gradient_accumulation_steps=gradient_accumulation_steps, | ||
| 209 | mixed_precision=mixed_precision | ||
| 210 | ) | ||
| 211 | |||
| 212 | logging.basicConfig(filename=output_dir.joinpath("log.txt"), level=logging.DEBUG) | ||
| 213 | |||
| 214 | seed = seed or (torch.random.seed() >> 32) | ||
| 215 | set_seed(seed) | ||
| 216 | |||
| 217 | # Load the tokenizer and add the placeholder token as a additional special token | ||
| 218 | tokenizer = MultiCLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder='tokenizer') | ||
| 219 | tokenizer.set_use_vector_shuffle(vector_shuffle) | ||
| 220 | tokenizer.set_dropout(vector_dropout) | ||
| 221 | |||
| 222 | # Load models and create wrapper for stable diffusion | ||
| 223 | text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path, subfolder='text_encoder') | ||
| 224 | vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder='vae') | ||
| 225 | unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder='unet') | ||
| 226 | noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder='scheduler') | ||
| 227 | checkpoint_scheduler = DPMSolverMultistepScheduler.from_pretrained( | ||
| 228 | pretrained_model_name_or_path, subfolder='scheduler') | ||
| 229 | |||
| 230 | vae.enable_slicing() | ||
| 231 | vae.set_use_memory_efficient_attention_xformers(True) | ||
| 232 | unet.set_use_memory_efficient_attention_xformers(True) | ||
| 233 | |||
| 234 | if gradient_checkpointing: | ||
| 235 | unet.enable_gradient_checkpointing() | ||
| 236 | text_encoder.gradient_checkpointing_enable() | ||
| 237 | |||
| 238 | embeddings = patch_managed_embeddings(text_encoder) | ||
| 239 | |||
| 240 | if embeddings_dir is not None: | ||
| 241 | embeddings_dir = Path(embeddings_dir) | ||
| 242 | if not embeddings_dir.exists() or not embeddings_dir.is_dir(): | ||
| 243 | raise ValueError("--embeddings_dir must point to an existing directory") | ||
| 244 | |||
| 245 | added_tokens, added_ids = load_embeddings_from_dir(tokenizer, embeddings, embeddings_dir) | ||
| 246 | print(f"Added {len(added_tokens)} tokens from embeddings dir: {list(zip(added_tokens, added_ids))}") | ||
| 247 | |||
| 248 | # Convert the initializer_token, placeholder_token to ids | ||
| 249 | initializer_token_ids = [ | ||
| 250 | tokenizer.encode(token, add_special_tokens=False) | ||
| 251 | for token in initializer_token | ||
| 252 | ] | ||
| 253 | |||
| 254 | placeholder_token_ids = tokenizer.add_multi_tokens(placeholder_token, num_vectors) | ||
| 255 | embeddings.resize(len(tokenizer)) | ||
| 256 | |||
| 257 | for (new_id, init_ids) in zip(placeholder_token_ids, initializer_token_ids): | ||
| 258 | embeddings.add_embed(new_id, init_ids) | ||
| 259 | |||
| 260 | init_ratios = [ | ||
| 261 | f"{len(init_ids)} / {len(new_id)}" | ||
| 262 | for new_id, init_ids in zip(placeholder_token_ids, initializer_token_ids) | ||
| 263 | ] | ||
| 264 | |||
| 265 | print(f"Added {len(placeholder_token_ids)} new tokens: {list(zip(placeholder_token, placeholder_token_ids, init_ratios))}") | ||
| 266 | |||
| 267 | vae.requires_grad_(False) | ||
| 268 | unet.requires_grad_(False) | ||
| 269 | text_encoder.requires_grad_(False) | ||
| 270 | |||
| 271 | if scale_lr: | ||
| 272 | learning_rate = ( | ||
| 273 | learning_rate * gradient_accumulation_steps * | ||
| 274 | train_batch_size * accelerator.num_processes | ||
| 275 | ) | ||
| 276 | |||
| 277 | # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | ||
| 278 | if use_8bit_adam: | ||
| 279 | try: | ||
| 280 | import bitsandbytes as bnb | ||
| 281 | except ImportError: | ||
| 282 | raise ImportError("To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`.") | ||
| 283 | |||
| 284 | optimizer_class = bnb.optim.AdamW8bit | ||
| 285 | else: | ||
| 286 | optimizer_class = torch.optim.AdamW | ||
| 287 | |||
| 288 | weight_dtype = torch.float32 | ||
| 289 | if mixed_precision == "fp16": | ||
| 290 | weight_dtype = torch.float16 | ||
| 291 | elif mixed_precision == "bf16": | ||
| 292 | weight_dtype = torch.bfloat16 | ||
| 293 | |||
| 294 | datamodule = VlpnDataModule( | ||
| 295 | data_file=data_file, | ||
| 296 | batch_size=train_batch_size, | ||
| 297 | tokenizer=tokenizer, | ||
| 298 | class_subdir=class_image_dir, | ||
| 299 | num_class_images=num_class_images, | ||
| 300 | size=resolution, | ||
| 301 | num_buckets=num_buckets, | ||
| 302 | progressive_buckets=progressive_buckets, | ||
| 303 | bucket_step_size=bucket_step_size, | ||
| 304 | bucket_max_pixels=bucket_max_pixels, | ||
| 305 | dropout=tag_dropout, | ||
| 306 | shuffle=tag_shuffle, | ||
| 307 | template_key=data_template, | ||
| 308 | valid_set_size=valid_set_size, | ||
| 309 | valid_set_repeat=valid_set_repeat, | ||
| 310 | seed=seed, | ||
| 311 | filter=data_filter, | ||
| 312 | dtype=weight_dtype | ||
| 313 | ) | ||
| 314 | datamodule.setup() | ||
| 315 | |||
| 316 | train_dataloader = datamodule.train_dataloader | ||
| 317 | val_dataloader = datamodule.val_dataloader | ||
| 318 | |||
| 319 | train_dataloader, val_dataloader = accelerator.prepare(train_dataloader, val_dataloader) | ||
| 320 | |||
| 321 | if num_class_images != 0: | ||
| 322 | generate_class_images( | ||
| 323 | accelerator, | ||
| 324 | text_encoder, | ||
| 325 | vae, | ||
| 326 | unet, | ||
| 327 | tokenizer, | ||
| 328 | checkpoint_scheduler, | ||
| 329 | datamodule.data_train, | ||
| 330 | sample_batch_size, | ||
| 331 | sample_image_size, | ||
| 332 | sample_steps | ||
| 333 | ) | ||
| 334 | |||
| 335 | return TrainingSetup( | ||
| 336 | accelerator=accelerator, | ||
| 337 | tokenizer=tokenizer, | ||
| 338 | text_encoder=text_encoder, | ||
| 339 | vae=vae, | ||
| 340 | unet=unet, | ||
| 341 | noise_scheduler=noise_scheduler, | ||
| 342 | checkpoint_scheduler=checkpoint_scheduler, | ||
| 343 | optimizer_class=optimizer_class, | ||
| 344 | learning_rate=learning_rate, | ||
| 345 | output_dir=output_dir, | ||
| 346 | weight_dtype=weight_dtype, | ||
| 347 | seed=seed, | ||
| 348 | train_dataloader=train_dataloader, | ||
| 349 | val_dataloader=val_dataloader, | ||
| 350 | placeholder_token=placeholder_token, | ||
| 351 | placeholder_token_ids=placeholder_token_ids | ||
| 352 | ) | ||
| 353 | |||
| 354 | |||
| 136 | def loss_step( | 355 | def loss_step( |
| 137 | vae: AutoencoderKL, | 356 | vae: AutoencoderKL, |
| 138 | noise_scheduler: DDPMScheduler, | 357 | noise_scheduler: DDPMScheduler, |
| @@ -221,15 +440,14 @@ def train_loop( | |||
| 221 | sample_steps: int = 20, | 440 | sample_steps: int = 20, |
| 222 | checkpoint_frequency: int = 50, | 441 | checkpoint_frequency: int = 50, |
| 223 | global_step_offset: int = 0, | 442 | global_step_offset: int = 0, |
| 224 | gradient_accumulation_steps: int = 1, | ||
| 225 | num_epochs: int = 100, | 443 | num_epochs: int = 100, |
| 226 | on_log: Callable[[], dict[str, Any]] = noop_on_log, | 444 | on_log: Callable[[], dict[str, Any]] = noop_on_log, |
| 227 | on_train: Callable[[], _GeneratorContextManager] = nullcontext, | 445 | on_train: Callable[[int], _GeneratorContextManager] = noop_ctx, |
| 228 | on_before_optimize: Callable[[], None] = noop, | 446 | on_before_optimize: Callable[[int], None] = noop, |
| 229 | on_after_optimize: Callable[[float], None] = noop, | 447 | on_after_optimize: Callable[[float], None] = noop, |
| 230 | on_eval: Callable[[], _GeneratorContextManager] = nullcontext | 448 | on_eval: Callable[[], _GeneratorContextManager] = noop_ctx |
| 231 | ): | 449 | ): |
| 232 | num_training_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps) | 450 | num_training_steps_per_epoch = math.ceil(len(train_dataloader) / accelerator.gradient_accumulation_steps) |
| 233 | num_val_steps_per_epoch = len(val_dataloader) | 451 | num_val_steps_per_epoch = len(val_dataloader) |
| 234 | 452 | ||
| 235 | num_training_steps = num_training_steps_per_epoch * num_epochs | 453 | num_training_steps = num_training_steps_per_epoch * num_epochs |
| @@ -273,14 +491,14 @@ def train_loop( | |||
| 273 | 491 | ||
| 274 | model.train() | 492 | model.train() |
| 275 | 493 | ||
| 276 | with on_train(): | 494 | with on_train(epoch): |
| 277 | for step, batch in enumerate(train_dataloader): | 495 | for step, batch in enumerate(train_dataloader): |
| 278 | with accelerator.accumulate(model): | 496 | with accelerator.accumulate(model): |
| 279 | loss, acc, bsz = loss_step(step, batch) | 497 | loss, acc, bsz = loss_step(step, batch) |
| 280 | 498 | ||
| 281 | accelerator.backward(loss) | 499 | accelerator.backward(loss) |
| 282 | 500 | ||
| 283 | on_before_optimize() | 501 | on_before_optimize(epoch) |
| 284 | 502 | ||
| 285 | optimizer.step() | 503 | optimizer.step() |
| 286 | lr_scheduler.step() | 504 | lr_scheduler.step() |
