diff options
Diffstat (limited to 'train_ti.py')
| -rw-r--r-- | train_ti.py | 475 |
1 files changed, 68 insertions, 407 deletions
diff --git a/train_ti.py b/train_ti.py index 3f4e739..3a55f40 100644 --- a/train_ti.py +++ b/train_ti.py | |||
| @@ -1,31 +1,15 @@ | |||
| 1 | import argparse | 1 | import argparse |
| 2 | import math | ||
| 3 | import datetime | ||
| 4 | import logging | ||
| 5 | from functools import partial | ||
| 6 | from pathlib import Path | ||
| 7 | from contextlib import contextmanager, nullcontext | ||
| 8 | 2 | ||
| 9 | import torch | 3 | import torch |
| 10 | import torch.utils.checkpoint | 4 | import torch.utils.checkpoint |
| 11 | 5 | ||
| 12 | from accelerate import Accelerator | ||
| 13 | from accelerate.logging import get_logger | 6 | from accelerate.logging import get_logger |
| 14 | from accelerate.utils import LoggerType, set_seed | ||
| 15 | from diffusers import AutoencoderKL, DDPMScheduler, DPMSolverMultistepScheduler, UNet2DConditionModel | ||
| 16 | import matplotlib.pyplot as plt | ||
| 17 | from tqdm.auto import tqdm | ||
| 18 | from transformers import CLIPTextModel | ||
| 19 | from slugify import slugify | ||
| 20 | 7 | ||
| 21 | from util import load_config, load_embeddings_from_dir | 8 | from util import load_config |
| 22 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | 9 | from data.csv import VlpnDataItem |
| 23 | from data.csv import VlpnDataModule, VlpnDataItem | 10 | from training.common import train_setup |
| 24 | from training.common import loss_step, train_loop, generate_class_images, get_scheduler | 11 | from training.modules.ti import train_ti |
| 25 | from training.lr import LRFinder | 12 | from training.util import save_args |
| 26 | from training.util import AverageMeter, CheckpointerBase, EMAModel, save_args | ||
| 27 | from models.clip.embeddings import patch_managed_embeddings | ||
| 28 | from models.clip.tokenizer import MultiCLIPTokenizer | ||
| 29 | 13 | ||
| 30 | logger = get_logger(__name__) | 14 | logger = get_logger(__name__) |
| 31 | 15 | ||
| @@ -271,7 +255,7 @@ def parse_args(): | |||
| 271 | parser.add_argument( | 255 | parser.add_argument( |
| 272 | "--lr_min_lr", | 256 | "--lr_min_lr", |
| 273 | type=float, | 257 | type=float, |
| 274 | default=None, | 258 | default=0.04, |
| 275 | help="Minimum learning rate in the lr scheduler." | 259 | help="Minimum learning rate in the lr scheduler." |
| 276 | ) | 260 | ) |
| 277 | parser.add_argument( | 261 | parser.add_argument( |
| @@ -401,19 +385,19 @@ def parse_args(): | |||
| 401 | help="The weight of prior preservation loss." | 385 | help="The weight of prior preservation loss." |
| 402 | ) | 386 | ) |
| 403 | parser.add_argument( | 387 | parser.add_argument( |
| 404 | "--decay_target", | 388 | "--emb_decay_target", |
| 405 | default=None, | 389 | default=0.4, |
| 406 | type=float, | 390 | type=float, |
| 407 | help="Embedding decay target." | 391 | help="Embedding decay target." |
| 408 | ) | 392 | ) |
| 409 | parser.add_argument( | 393 | parser.add_argument( |
| 410 | "--decay_factor", | 394 | "--emb_decay_factor", |
| 411 | default=1, | 395 | default=1, |
| 412 | type=float, | 396 | type=float, |
| 413 | help="Embedding decay factor." | 397 | help="Embedding decay factor." |
| 414 | ) | 398 | ) |
| 415 | parser.add_argument( | 399 | parser.add_argument( |
| 416 | "--decay_start", | 400 | "--emb_decay_start", |
| 417 | default=1e-4, | 401 | default=1e-4, |
| 418 | type=float, | 402 | type=float, |
| 419 | help="Embedding decay start offset." | 403 | help="Embedding decay start offset." |
| @@ -491,213 +475,10 @@ def parse_args(): | |||
| 491 | return args | 475 | return args |
| 492 | 476 | ||
| 493 | 477 | ||
| 494 | class Checkpointer(CheckpointerBase): | ||
| 495 | def __init__( | ||
| 496 | self, | ||
| 497 | weight_dtype, | ||
| 498 | accelerator: Accelerator, | ||
| 499 | vae: AutoencoderKL, | ||
| 500 | unet: UNet2DConditionModel, | ||
| 501 | tokenizer: MultiCLIPTokenizer, | ||
| 502 | text_encoder: CLIPTextModel, | ||
| 503 | ema_embeddings: EMAModel, | ||
| 504 | scheduler, | ||
| 505 | placeholder_token, | ||
| 506 | new_ids, | ||
| 507 | *args, | ||
| 508 | **kwargs | ||
| 509 | ): | ||
| 510 | super().__init__(*args, **kwargs) | ||
| 511 | |||
| 512 | self.weight_dtype = weight_dtype | ||
| 513 | self.accelerator = accelerator | ||
| 514 | self.vae = vae | ||
| 515 | self.unet = unet | ||
| 516 | self.tokenizer = tokenizer | ||
| 517 | self.text_encoder = text_encoder | ||
| 518 | self.ema_embeddings = ema_embeddings | ||
| 519 | self.scheduler = scheduler | ||
| 520 | self.placeholder_token = placeholder_token | ||
| 521 | self.new_ids = new_ids | ||
| 522 | |||
| 523 | @torch.no_grad() | ||
| 524 | def checkpoint(self, step, postfix): | ||
| 525 | print("Saving checkpoint for step %d..." % step) | ||
| 526 | |||
| 527 | checkpoints_path = self.output_dir.joinpath("checkpoints") | ||
| 528 | checkpoints_path.mkdir(parents=True, exist_ok=True) | ||
| 529 | |||
| 530 | text_encoder = self.accelerator.unwrap_model(self.text_encoder) | ||
| 531 | |||
| 532 | ema_context = self.ema_embeddings.apply_temporary( | ||
| 533 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) if self.ema_embeddings is not None else nullcontext() | ||
| 534 | |||
| 535 | with ema_context: | ||
| 536 | for (token, ids) in zip(self.placeholder_token, self.new_ids): | ||
| 537 | text_encoder.text_model.embeddings.save_embed( | ||
| 538 | ids, | ||
| 539 | checkpoints_path.joinpath(f"{slugify(token)}_{step}_{postfix}.bin") | ||
| 540 | ) | ||
| 541 | |||
| 542 | del text_encoder | ||
| 543 | |||
| 544 | @torch.no_grad() | ||
| 545 | def save_samples(self, step, num_inference_steps, guidance_scale=7.5, eta=0.0): | ||
| 546 | text_encoder = self.accelerator.unwrap_model(self.text_encoder) | ||
| 547 | |||
| 548 | ema_context = self.ema_embeddings.apply_temporary( | ||
| 549 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) if self.ema_embeddings is not None else nullcontext() | ||
| 550 | |||
| 551 | with ema_context: | ||
| 552 | orig_dtype = text_encoder.dtype | ||
| 553 | text_encoder.to(dtype=self.weight_dtype) | ||
| 554 | |||
| 555 | pipeline = VlpnStableDiffusion( | ||
| 556 | text_encoder=text_encoder, | ||
| 557 | vae=self.vae, | ||
| 558 | unet=self.unet, | ||
| 559 | tokenizer=self.tokenizer, | ||
| 560 | scheduler=self.scheduler, | ||
| 561 | ).to(self.accelerator.device) | ||
| 562 | pipeline.set_progress_bar_config(dynamic_ncols=True) | ||
| 563 | |||
| 564 | super().save_samples(pipeline, step, num_inference_steps, guidance_scale, eta) | ||
| 565 | |||
| 566 | text_encoder.to(dtype=orig_dtype) | ||
| 567 | |||
| 568 | del text_encoder | ||
| 569 | del pipeline | ||
| 570 | |||
| 571 | if torch.cuda.is_available(): | ||
| 572 | torch.cuda.empty_cache() | ||
| 573 | |||
| 574 | |||
| 575 | def main(): | 478 | def main(): |
| 576 | args = parse_args() | 479 | args = parse_args() |
| 577 | 480 | ||
| 578 | global_step_offset = args.global_step | 481 | def data_filter(item: VlpnDataItem): |
| 579 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | ||
| 580 | basepath = Path(args.output_dir).joinpath(slugify(args.project), now) | ||
| 581 | basepath.mkdir(parents=True, exist_ok=True) | ||
| 582 | |||
| 583 | accelerator = Accelerator( | ||
| 584 | log_with=LoggerType.TENSORBOARD, | ||
| 585 | logging_dir=f"{basepath}", | ||
| 586 | gradient_accumulation_steps=args.gradient_accumulation_steps, | ||
| 587 | mixed_precision=args.mixed_precision | ||
| 588 | ) | ||
| 589 | |||
| 590 | logging.basicConfig(filename=basepath.joinpath("log.txt"), level=logging.DEBUG) | ||
| 591 | |||
| 592 | args.seed = args.seed or (torch.random.seed() >> 32) | ||
| 593 | set_seed(args.seed) | ||
| 594 | |||
| 595 | save_args(basepath, args) | ||
| 596 | |||
| 597 | # Load the tokenizer and add the placeholder token as a additional special token | ||
| 598 | if args.tokenizer_name: | ||
| 599 | tokenizer = MultiCLIPTokenizer.from_pretrained(args.tokenizer_name) | ||
| 600 | elif args.pretrained_model_name_or_path: | ||
| 601 | tokenizer = MultiCLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') | ||
| 602 | tokenizer.set_use_vector_shuffle(args.vector_shuffle) | ||
| 603 | tokenizer.set_dropout(args.vector_dropout) | ||
| 604 | |||
| 605 | # Load models and create wrapper for stable diffusion | ||
| 606 | text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') | ||
| 607 | vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') | ||
| 608 | unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') | ||
| 609 | noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder='scheduler') | ||
| 610 | checkpoint_scheduler = DPMSolverMultistepScheduler.from_pretrained( | ||
| 611 | args.pretrained_model_name_or_path, subfolder='scheduler') | ||
| 612 | |||
| 613 | vae.enable_slicing() | ||
| 614 | vae.set_use_memory_efficient_attention_xformers(True) | ||
| 615 | unet.set_use_memory_efficient_attention_xformers(True) | ||
| 616 | |||
| 617 | if args.gradient_checkpointing: | ||
| 618 | unet.enable_gradient_checkpointing() | ||
| 619 | text_encoder.gradient_checkpointing_enable() | ||
| 620 | |||
| 621 | embeddings = patch_managed_embeddings(text_encoder) | ||
| 622 | ema_embeddings = None | ||
| 623 | |||
| 624 | if args.embeddings_dir is not None: | ||
| 625 | embeddings_dir = Path(args.embeddings_dir) | ||
| 626 | if not embeddings_dir.exists() or not embeddings_dir.is_dir(): | ||
| 627 | raise ValueError("--embeddings_dir must point to an existing directory") | ||
| 628 | |||
| 629 | added_tokens, added_ids = load_embeddings_from_dir(tokenizer, embeddings, embeddings_dir) | ||
| 630 | print(f"Added {len(added_tokens)} tokens from embeddings dir: {list(zip(added_tokens, added_ids))}") | ||
| 631 | |||
| 632 | # Convert the initializer_token, placeholder_token to ids | ||
| 633 | initializer_token_ids = [ | ||
| 634 | tokenizer.encode(token, add_special_tokens=False) | ||
| 635 | for token in args.initializer_token | ||
| 636 | ] | ||
| 637 | |||
| 638 | new_ids = tokenizer.add_multi_tokens(args.placeholder_token, args.num_vectors) | ||
| 639 | embeddings.resize(len(tokenizer)) | ||
| 640 | |||
| 641 | for (new_id, init_ids) in zip(new_ids, initializer_token_ids): | ||
| 642 | embeddings.add_embed(new_id, init_ids) | ||
| 643 | |||
| 644 | init_ratios = [f"{len(init_ids)} / {len(new_id)}" for new_id, init_ids in zip(new_ids, initializer_token_ids)] | ||
| 645 | |||
| 646 | print(f"Added {len(new_ids)} new tokens: {list(zip(args.placeholder_token, new_ids, init_ratios))}") | ||
| 647 | |||
| 648 | if args.use_ema: | ||
| 649 | ema_embeddings = EMAModel( | ||
| 650 | text_encoder.text_model.embeddings.temp_token_embedding.parameters(), | ||
| 651 | inv_gamma=args.ema_inv_gamma, | ||
| 652 | power=args.ema_power, | ||
| 653 | max_value=args.ema_max_decay, | ||
| 654 | ) | ||
| 655 | |||
| 656 | vae.requires_grad_(False) | ||
| 657 | unet.requires_grad_(False) | ||
| 658 | |||
| 659 | text_encoder.text_model.encoder.requires_grad_(False) | ||
| 660 | text_encoder.text_model.final_layer_norm.requires_grad_(False) | ||
| 661 | text_encoder.text_model.embeddings.position_embedding.requires_grad_(False) | ||
| 662 | text_encoder.text_model.embeddings.token_embedding.requires_grad_(False) | ||
| 663 | |||
| 664 | if args.scale_lr: | ||
| 665 | args.learning_rate = ( | ||
| 666 | args.learning_rate * args.gradient_accumulation_steps * | ||
| 667 | args.train_batch_size * accelerator.num_processes | ||
| 668 | ) | ||
| 669 | |||
| 670 | if args.find_lr: | ||
| 671 | args.learning_rate = 1e-5 | ||
| 672 | |||
| 673 | # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | ||
| 674 | if args.use_8bit_adam: | ||
| 675 | try: | ||
| 676 | import bitsandbytes as bnb | ||
| 677 | except ImportError: | ||
| 678 | raise ImportError("To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`.") | ||
| 679 | |||
| 680 | optimizer_class = bnb.optim.AdamW8bit | ||
| 681 | else: | ||
| 682 | optimizer_class = torch.optim.AdamW | ||
| 683 | |||
| 684 | # Initialize the optimizer | ||
| 685 | optimizer = optimizer_class( | ||
| 686 | text_encoder.text_model.embeddings.temp_token_embedding.parameters(), # only optimize the embeddings | ||
| 687 | lr=args.learning_rate, | ||
| 688 | betas=(args.adam_beta1, args.adam_beta2), | ||
| 689 | weight_decay=args.adam_weight_decay, | ||
| 690 | eps=args.adam_epsilon, | ||
| 691 | amsgrad=args.adam_amsgrad, | ||
| 692 | ) | ||
| 693 | |||
| 694 | weight_dtype = torch.float32 | ||
| 695 | if args.mixed_precision == "fp16": | ||
| 696 | weight_dtype = torch.float16 | ||
| 697 | elif args.mixed_precision == "bf16": | ||
| 698 | weight_dtype = torch.bfloat16 | ||
| 699 | |||
| 700 | def keyword_filter(item: VlpnDataItem): | ||
| 701 | cond1 = any( | 482 | cond1 = any( |
| 702 | keyword in part | 483 | keyword in part |
| 703 | for keyword in args.placeholder_token | 484 | for keyword in args.placeholder_token |
| @@ -710,199 +491,79 @@ def main(): | |||
| 710 | ) | 491 | ) |
| 711 | return cond1 and cond3 and cond4 | 492 | return cond1 and cond3 and cond4 |
| 712 | 493 | ||
| 713 | datamodule = VlpnDataModule( | 494 | setup = train_setup( |
| 495 | output_dir=args.output_dir, | ||
| 496 | project=args.project, | ||
| 497 | pretrained_model_name_or_path=args.pretrained_model_name_or_path, | ||
| 498 | learning_rate=args.learning_rate, | ||
| 714 | data_file=args.train_data_file, | 499 | data_file=args.train_data_file, |
| 715 | batch_size=args.train_batch_size, | 500 | gradient_accumulation_steps=args.gradient_accumulation_steps, |
| 716 | tokenizer=tokenizer, | 501 | mixed_precision=args.mixed_precision, |
| 717 | class_subdir=args.class_image_dir, | 502 | seed=args.seed, |
| 503 | vector_shuffle=args.vector_shuffle, | ||
| 504 | vector_dropout=args.vector_dropout, | ||
| 505 | gradient_checkpointing=args.gradient_checkpointing, | ||
| 506 | embeddings_dir=args.embeddings_dir, | ||
| 507 | placeholder_token=args.placeholder_token, | ||
| 508 | initializer_token=args.initializer_token, | ||
| 509 | num_vectors=args.num_vectors, | ||
| 510 | scale_lr=args.scale_lr, | ||
| 511 | use_8bit_adam=args.use_8bit_adam, | ||
| 512 | train_batch_size=args.train_batch_size, | ||
| 513 | class_image_dir=args.class_image_dir, | ||
| 718 | num_class_images=args.num_class_images, | 514 | num_class_images=args.num_class_images, |
| 719 | size=args.resolution, | 515 | resolution=args.resolution, |
| 720 | num_buckets=args.num_buckets, | 516 | num_buckets=args.num_buckets, |
| 721 | progressive_buckets=args.progressive_buckets, | 517 | progressive_buckets=args.progressive_buckets, |
| 722 | bucket_step_size=args.bucket_step_size, | 518 | bucket_step_size=args.bucket_step_size, |
| 723 | bucket_max_pixels=args.bucket_max_pixels, | 519 | bucket_max_pixels=args.bucket_max_pixels, |
| 724 | dropout=args.tag_dropout, | 520 | tag_dropout=args.tag_dropout, |
| 725 | shuffle=not args.no_tag_shuffle, | 521 | tag_shuffle=not args.no_tag_shuffle, |
| 726 | template_key=args.train_data_template, | 522 | data_template=args.train_data_template, |
| 727 | valid_set_size=args.valid_set_size, | 523 | valid_set_size=args.valid_set_size, |
| 728 | valid_set_repeat=args.valid_set_repeat, | 524 | valid_set_repeat=args.valid_set_repeat, |
| 729 | num_workers=args.dataloader_num_workers, | 525 | data_filter=data_filter, |
| 730 | seed=args.seed, | 526 | sample_image_size=args.sample_image_size, |
| 731 | filter=keyword_filter, | 527 | sample_batch_size=args.sample_batch_size, |
| 732 | dtype=weight_dtype | 528 | sample_steps=args.sample_steps, |
| 733 | ) | ||
| 734 | datamodule.setup() | ||
| 735 | |||
| 736 | train_dataloader = datamodule.train_dataloader | ||
| 737 | val_dataloader = datamodule.val_dataloader | ||
| 738 | |||
| 739 | if args.num_class_images != 0: | ||
| 740 | generate_class_images( | ||
| 741 | accelerator, | ||
| 742 | text_encoder, | ||
| 743 | vae, | ||
| 744 | unet, | ||
| 745 | tokenizer, | ||
| 746 | checkpoint_scheduler, | ||
| 747 | datamodule.data_train, | ||
| 748 | args.sample_batch_size, | ||
| 749 | args.sample_image_size, | ||
| 750 | args.sample_steps | ||
| 751 | ) | ||
| 752 | |||
| 753 | if args.find_lr: | ||
| 754 | lr_scheduler = None | ||
| 755 | else: | ||
| 756 | lr_scheduler = get_scheduler( | ||
| 757 | args.lr_scheduler, | ||
| 758 | optimizer=optimizer, | ||
| 759 | min_lr=args.lr_min_lr, | ||
| 760 | lr=args.learning_rate, | ||
| 761 | warmup_func=args.lr_warmup_func, | ||
| 762 | annealing_func=args.lr_annealing_func, | ||
| 763 | warmup_exp=args.lr_warmup_exp, | ||
| 764 | annealing_exp=args.lr_annealing_exp, | ||
| 765 | cycles=args.lr_cycles, | ||
| 766 | train_epochs=args.num_train_epochs, | ||
| 767 | warmup_epochs=args.lr_warmup_epochs, | ||
| 768 | num_training_steps_per_epoch=len(train_dataloader), | ||
| 769 | gradient_accumulation_steps=args.gradient_accumulation_steps | ||
| 770 | ) | ||
| 771 | |||
| 772 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( | ||
| 773 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler | ||
| 774 | ) | 529 | ) |
| 775 | 530 | ||
| 776 | # Move vae and unet to device | 531 | save_args(setup.output_dir, args) |
| 777 | vae.to(accelerator.device, dtype=weight_dtype) | ||
| 778 | unet.to(accelerator.device, dtype=weight_dtype) | ||
| 779 | 532 | ||
| 780 | if args.use_ema: | 533 | train_ti( |
| 781 | ema_embeddings.to(accelerator.device) | 534 | setup=setup, |
| 782 | 535 | num_train_epochs=args.num_train_epochs, | |
| 783 | # Keep vae and unet in eval mode as we don't train these | 536 | num_class_images=args.num_class_images, |
| 784 | vae.eval() | 537 | prior_loss_weight=args.prior_loss_weight, |
| 785 | 538 | use_ema=args.use_ema, | |
| 786 | if args.gradient_checkpointing: | 539 | ema_inv_gamma=args.ema_inv_gamma, |
| 787 | unet.train() | 540 | ema_power=args.ema_power, |
| 788 | else: | 541 | ema_max_decay=args.ema_max_decay, |
| 789 | unet.eval() | 542 | adam_beta1=args.adam_beta1, |
| 790 | 543 | adam_beta2=args.adam_beta2, | |
| 791 | @contextmanager | 544 | adam_weight_decay=args.adam_weight_decay, |
| 792 | def on_train(): | 545 | adam_epsilon=args.adam_epsilon, |
| 793 | try: | 546 | adam_amsgrad=args.adam_amsgrad, |
| 794 | tokenizer.train() | 547 | lr_scheduler=args.lr_scheduler, |
| 795 | yield | 548 | lr_min_lr=args.lr_min_lr, |
| 796 | finally: | 549 | lr_warmup_func=args.lr_warmup_func, |
| 797 | pass | 550 | lr_annealing_func=args.lr_annealing_func, |
| 798 | 551 | lr_warmup_exp=args.lr_warmup_exp, | |
| 799 | @contextmanager | 552 | lr_annealing_exp=args.lr_annealing_exp, |
| 800 | def on_eval(): | 553 | lr_cycles=args.lr_cycles, |
| 801 | try: | 554 | lr_warmup_epochs=args.lr_warmup_epochs, |
| 802 | tokenizer.eval() | 555 | emb_decay_target=args.emb_decay_target, |
| 803 | 556 | emb_decay_factor=args.emb_decay_factor, | |
| 804 | ema_context = ema_embeddings.apply_temporary( | 557 | emb_decay_start=args.emb_decay_start, |
| 805 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) if args.use_ema else nullcontext() | ||
| 806 | |||
| 807 | with ema_context: | ||
| 808 | yield | ||
| 809 | finally: | ||
| 810 | pass | ||
| 811 | |||
| 812 | @torch.no_grad() | ||
| 813 | def on_after_optimize(lr: float): | ||
| 814 | text_encoder.text_model.embeddings.normalize( | ||
| 815 | args.decay_target, | ||
| 816 | min(1.0, max(0.0, args.decay_factor * ((lr - args.decay_start) / (args.learning_rate - args.decay_start)))) | ||
| 817 | ) | ||
| 818 | |||
| 819 | if args.use_ema: | ||
| 820 | ema_embeddings.step(text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
| 821 | |||
| 822 | def on_log(): | ||
| 823 | if args.use_ema: | ||
| 824 | return {"ema_decay": ema_embeddings.decay} | ||
| 825 | return {} | ||
| 826 | |||
| 827 | loss_step_ = partial( | ||
| 828 | loss_step, | ||
| 829 | vae, | ||
| 830 | noise_scheduler, | ||
| 831 | unet, | ||
| 832 | text_encoder, | ||
| 833 | args.num_class_images != 0, | ||
| 834 | args.prior_loss_weight, | ||
| 835 | args.seed, | ||
| 836 | ) | ||
| 837 | |||
| 838 | checkpointer = Checkpointer( | ||
| 839 | weight_dtype=weight_dtype, | ||
| 840 | datamodule=datamodule, | ||
| 841 | accelerator=accelerator, | ||
| 842 | vae=vae, | ||
| 843 | unet=unet, | ||
| 844 | tokenizer=tokenizer, | ||
| 845 | text_encoder=text_encoder, | ||
| 846 | ema_embeddings=ema_embeddings, | ||
| 847 | scheduler=checkpoint_scheduler, | ||
| 848 | placeholder_token=args.placeholder_token, | ||
| 849 | new_ids=new_ids, | ||
| 850 | output_dir=basepath, | ||
| 851 | sample_image_size=args.sample_image_size, | 558 | sample_image_size=args.sample_image_size, |
| 852 | sample_batch_size=args.sample_batch_size, | 559 | sample_batch_size=args.sample_batch_size, |
| 853 | sample_batches=args.sample_batches, | 560 | sample_batches=args.sample_batches, |
| 854 | seed=args.seed | 561 | sample_frequency=args.sample_frequency, |
| 562 | sample_steps=args.sample_steps, | ||
| 563 | checkpoint_frequency=args.checkpoint_frequency, | ||
| 564 | global_step_offset=args.global_step, | ||
| 855 | ) | 565 | ) |
| 856 | 566 | ||
| 857 | if accelerator.is_main_process: | ||
| 858 | config = vars(args).copy() | ||
| 859 | config["initializer_token"] = " ".join(config["initializer_token"]) | ||
| 860 | config["placeholder_token"] = " ".join(config["placeholder_token"]) | ||
| 861 | config["num_vectors"] = " ".join([str(n) for n in config["num_vectors"]]) | ||
| 862 | if config["collection"] is not None: | ||
| 863 | config["collection"] = " ".join(config["collection"]) | ||
| 864 | if config["exclude_collections"] is not None: | ||
| 865 | config["exclude_collections"] = " ".join(config["exclude_collections"]) | ||
| 866 | accelerator.init_trackers("textual_inversion", config=config) | ||
| 867 | |||
| 868 | if args.find_lr: | ||
| 869 | lr_finder = LRFinder( | ||
| 870 | accelerator=accelerator, | ||
| 871 | optimizer=optimizer, | ||
| 872 | model=text_encoder, | ||
| 873 | train_dataloader=train_dataloader, | ||
| 874 | val_dataloader=val_dataloader, | ||
| 875 | loss_step=loss_step_, | ||
| 876 | on_train=on_train, | ||
| 877 | on_eval=on_eval, | ||
| 878 | on_after_optimize=on_after_optimize, | ||
| 879 | ) | ||
| 880 | lr_finder.run(num_epochs=100, end_lr=1e3) | ||
| 881 | |||
| 882 | plt.savefig(basepath.joinpath("lr.png"), dpi=300) | ||
| 883 | plt.close() | ||
| 884 | else: | ||
| 885 | train_loop( | ||
| 886 | accelerator=accelerator, | ||
| 887 | optimizer=optimizer, | ||
| 888 | lr_scheduler=lr_scheduler, | ||
| 889 | model=text_encoder, | ||
| 890 | checkpointer=checkpointer, | ||
| 891 | train_dataloader=train_dataloader, | ||
| 892 | val_dataloader=val_dataloader, | ||
| 893 | loss_step=loss_step_, | ||
| 894 | sample_frequency=args.sample_frequency, | ||
| 895 | sample_steps=args.sample_steps, | ||
| 896 | checkpoint_frequency=args.checkpoint_frequency, | ||
| 897 | global_step_offset=global_step_offset, | ||
| 898 | gradient_accumulation_steps=args.gradient_accumulation_steps, | ||
| 899 | num_epochs=args.num_train_epochs, | ||
| 900 | on_log=on_log, | ||
| 901 | on_train=on_train, | ||
| 902 | on_after_optimize=on_after_optimize, | ||
| 903 | on_eval=on_eval | ||
| 904 | ) | ||
| 905 | |||
| 906 | 567 | ||
| 907 | if __name__ == "__main__": | 568 | if __name__ == "__main__": |
| 908 | main() | 569 | main() |
