diff options
| -rw-r--r-- | train_dreambooth.py | 3 | ||||
| -rw-r--r-- | train_ti.py | 463 | ||||
| -rw-r--r-- | training/common.py | 264 | ||||
| -rw-r--r-- | training/modules/dreambooth.py | 0 | ||||
| -rw-r--r-- | training/modules/lora.py | 0 | ||||
| -rw-r--r-- | training/modules/ti.py | 284 | ||||
| -rw-r--r-- | training/optimization.py | 53 |
7 files changed, 456 insertions, 611 deletions
diff --git a/train_dreambooth.py b/train_dreambooth.py index c892ebf..2145e2b 100644 --- a/train_dreambooth.py +++ b/train_dreambooth.py | |||
| @@ -21,7 +21,8 @@ from slugify import slugify | |||
| 21 | from util import load_config, load_embeddings_from_dir | 21 | from util import load_config, load_embeddings_from_dir |
| 22 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | 22 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion |
| 23 | from data.csv import VlpnDataModule, VlpnDataItem | 23 | from data.csv import VlpnDataModule, VlpnDataItem |
| 24 | from training.common import loss_step, train_loop, generate_class_images, get_scheduler | 24 | from training.common import loss_step, train_loop, generate_class_images |
| 25 | from training.optimization import get_scheduler | ||
| 25 | from training.lr import LRFinder | 26 | from training.lr import LRFinder |
| 26 | from training.util import CheckpointerBase, save_args | 27 | from training.util import CheckpointerBase, save_args |
| 27 | from models.clip.embeddings import patch_managed_embeddings | 28 | from models.clip.embeddings import patch_managed_embeddings |
diff --git a/train_ti.py b/train_ti.py index 3a55f40..61195f6 100644 --- a/train_ti.py +++ b/train_ti.py | |||
| @@ -1,15 +1,29 @@ | |||
| 1 | import argparse | 1 | import argparse |
| 2 | import datetime | ||
| 3 | import logging | ||
| 4 | from functools import partial | ||
| 5 | from pathlib import Path | ||
| 6 | from contextlib import contextmanager, nullcontext | ||
| 2 | 7 | ||
| 3 | import torch | 8 | import torch |
| 4 | import torch.utils.checkpoint | 9 | import torch.utils.checkpoint |
| 5 | 10 | ||
| 11 | from accelerate import Accelerator | ||
| 6 | from accelerate.logging import get_logger | 12 | from accelerate.logging import get_logger |
| 13 | from accelerate.utils import LoggerType, set_seed | ||
| 14 | from diffusers import AutoencoderKL, UNet2DConditionModel | ||
| 15 | import matplotlib.pyplot as plt | ||
| 16 | from transformers import CLIPTextModel | ||
| 17 | from slugify import slugify | ||
| 7 | 18 | ||
| 8 | from util import load_config | 19 | from util import load_config, load_embeddings_from_dir |
| 9 | from data.csv import VlpnDataItem | 20 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion |
| 10 | from training.common import train_setup | 21 | from data.csv import VlpnDataModule, VlpnDataItem |
| 11 | from training.modules.ti import train_ti | 22 | from training.common import loss_step, train_loop, generate_class_images, add_placeholder_tokens, get_models |
| 12 | from training.util import save_args | 23 | from training.optimization import get_scheduler |
| 24 | from training.lr import LRFinder | ||
| 25 | from training.util import CheckpointerBase, EMAModel, save_args | ||
| 26 | from models.clip.tokenizer import MultiCLIPTokenizer | ||
| 13 | 27 | ||
| 14 | logger = get_logger(__name__) | 28 | logger = get_logger(__name__) |
| 15 | 29 | ||
| @@ -52,13 +66,13 @@ def parse_args(): | |||
| 52 | help="The name of the current project.", | 66 | help="The name of the current project.", |
| 53 | ) | 67 | ) |
| 54 | parser.add_argument( | 68 | parser.add_argument( |
| 55 | "--placeholder_token", | 69 | "--placeholder_tokens", |
| 56 | type=str, | 70 | type=str, |
| 57 | nargs='*', | 71 | nargs='*', |
| 58 | help="A token to use as a placeholder for the concept.", | 72 | help="A token to use as a placeholder for the concept.", |
| 59 | ) | 73 | ) |
| 60 | parser.add_argument( | 74 | parser.add_argument( |
| 61 | "--initializer_token", | 75 | "--initializer_tokens", |
| 62 | type=str, | 76 | type=str, |
| 63 | nargs='*', | 77 | nargs='*', |
| 64 | help="A token to use as initializer word." | 78 | help="A token to use as initializer word." |
| @@ -439,29 +453,29 @@ def parse_args(): | |||
| 439 | if args.project is None: | 453 | if args.project is None: |
| 440 | raise ValueError("You must specify --project") | 454 | raise ValueError("You must specify --project") |
| 441 | 455 | ||
| 442 | if isinstance(args.placeholder_token, str): | 456 | if isinstance(args.placeholder_tokens, str): |
| 443 | args.placeholder_token = [args.placeholder_token] | 457 | args.placeholder_tokens = [args.placeholder_tokens] |
| 444 | 458 | ||
| 445 | if len(args.placeholder_token) == 0: | 459 | if len(args.placeholder_tokens) == 0: |
| 446 | args.placeholder_token = [f"<*{i}>" for i in range(args.initializer_token)] | 460 | args.placeholder_tokens = [f"<*{i}>" for i in range(args.initializer_tokens)] |
| 447 | 461 | ||
| 448 | if isinstance(args.initializer_token, str): | 462 | if isinstance(args.initializer_tokens, str): |
| 449 | args.initializer_token = [args.initializer_token] * len(args.placeholder_token) | 463 | args.initializer_tokens = [args.initializer_tokens] * len(args.placeholder_tokens) |
| 450 | 464 | ||
| 451 | if len(args.initializer_token) == 0: | 465 | if len(args.initializer_tokens) == 0: |
| 452 | raise ValueError("You must specify --initializer_token") | 466 | raise ValueError("You must specify --initializer_tokens") |
| 453 | 467 | ||
| 454 | if len(args.placeholder_token) != len(args.initializer_token): | 468 | if len(args.placeholder_tokens) != len(args.initializer_tokens): |
| 455 | raise ValueError("--placeholder_token and --initializer_token must have the same number of items") | 469 | raise ValueError("--placeholder_tokens and --initializer_tokens must have the same number of items") |
| 456 | 470 | ||
| 457 | if args.num_vectors is None: | 471 | if args.num_vectors is None: |
| 458 | args.num_vectors = 1 | 472 | args.num_vectors = 1 |
| 459 | 473 | ||
| 460 | if isinstance(args.num_vectors, int): | 474 | if isinstance(args.num_vectors, int): |
| 461 | args.num_vectors = [args.num_vectors] * len(args.initializer_token) | 475 | args.num_vectors = [args.num_vectors] * len(args.initializer_tokens) |
| 462 | 476 | ||
| 463 | if len(args.placeholder_token) != len(args.num_vectors): | 477 | if len(args.placeholder_tokens) != len(args.num_vectors): |
| 464 | raise ValueError("--placeholder_token and --num_vectors must have the same number of items") | 478 | raise ValueError("--placeholder_tokens and --num_vectors must have the same number of items") |
| 465 | 479 | ||
| 466 | if isinstance(args.collection, str): | 480 | if isinstance(args.collection, str): |
| 467 | args.collection = [args.collection] | 481 | args.collection = [args.collection] |
| @@ -475,13 +489,197 @@ def parse_args(): | |||
| 475 | return args | 489 | return args |
| 476 | 490 | ||
| 477 | 491 | ||
| 492 | class Checkpointer(CheckpointerBase): | ||
| 493 | def __init__( | ||
| 494 | self, | ||
| 495 | weight_dtype, | ||
| 496 | accelerator: Accelerator, | ||
| 497 | vae: AutoencoderKL, | ||
| 498 | unet: UNet2DConditionModel, | ||
| 499 | tokenizer: MultiCLIPTokenizer, | ||
| 500 | text_encoder: CLIPTextModel, | ||
| 501 | ema_embeddings: EMAModel, | ||
| 502 | scheduler, | ||
| 503 | placeholder_tokens, | ||
| 504 | placeholder_token_ids, | ||
| 505 | *args, | ||
| 506 | **kwargs | ||
| 507 | ): | ||
| 508 | super().__init__(*args, **kwargs) | ||
| 509 | |||
| 510 | self.weight_dtype = weight_dtype | ||
| 511 | self.accelerator = accelerator | ||
| 512 | self.vae = vae | ||
| 513 | self.unet = unet | ||
| 514 | self.tokenizer = tokenizer | ||
| 515 | self.text_encoder = text_encoder | ||
| 516 | self.ema_embeddings = ema_embeddings | ||
| 517 | self.scheduler = scheduler | ||
| 518 | self.placeholder_tokens = placeholder_tokens | ||
| 519 | self.placeholder_token_ids = placeholder_token_ids | ||
| 520 | |||
| 521 | @torch.no_grad() | ||
| 522 | def checkpoint(self, step, postfix): | ||
| 523 | print("Saving checkpoint for step %d..." % step) | ||
| 524 | |||
| 525 | checkpoints_path = self.output_dir.joinpath("checkpoints") | ||
| 526 | checkpoints_path.mkdir(parents=True, exist_ok=True) | ||
| 527 | |||
| 528 | text_encoder = self.accelerator.unwrap_model(self.text_encoder) | ||
| 529 | |||
| 530 | ema_context = self.ema_embeddings.apply_temporary( | ||
| 531 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) if self.ema_embeddings is not None else nullcontext() | ||
| 532 | |||
| 533 | with ema_context: | ||
| 534 | for (token, ids) in zip(self.placeholder_tokens, self.placeholder_token_ids): | ||
| 535 | text_encoder.text_model.embeddings.save_embed( | ||
| 536 | ids, | ||
| 537 | checkpoints_path.joinpath(f"{slugify(token)}_{step}_{postfix}.bin") | ||
| 538 | ) | ||
| 539 | |||
| 540 | del text_encoder | ||
| 541 | |||
| 542 | @torch.no_grad() | ||
| 543 | def save_samples(self, step, num_inference_steps, guidance_scale=7.5, eta=0.0): | ||
| 544 | text_encoder = self.accelerator.unwrap_model(self.text_encoder) | ||
| 545 | |||
| 546 | ema_context = self.ema_embeddings.apply_temporary( | ||
| 547 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) if self.ema_embeddings is not None else nullcontext() | ||
| 548 | |||
| 549 | with ema_context: | ||
| 550 | orig_dtype = text_encoder.dtype | ||
| 551 | text_encoder.to(dtype=self.weight_dtype) | ||
| 552 | |||
| 553 | pipeline = VlpnStableDiffusion( | ||
| 554 | text_encoder=text_encoder, | ||
| 555 | vae=self.vae, | ||
| 556 | unet=self.unet, | ||
| 557 | tokenizer=self.tokenizer, | ||
| 558 | scheduler=self.scheduler, | ||
| 559 | ).to(self.accelerator.device) | ||
| 560 | pipeline.set_progress_bar_config(dynamic_ncols=True) | ||
| 561 | |||
| 562 | super().save_samples(pipeline, step, num_inference_steps, guidance_scale, eta) | ||
| 563 | |||
| 564 | text_encoder.to(dtype=orig_dtype) | ||
| 565 | |||
| 566 | del text_encoder | ||
| 567 | del pipeline | ||
| 568 | |||
| 569 | if torch.cuda.is_available(): | ||
| 570 | torch.cuda.empty_cache() | ||
| 571 | |||
| 572 | |||
| 478 | def main(): | 573 | def main(): |
| 479 | args = parse_args() | 574 | args = parse_args() |
| 480 | 575 | ||
| 481 | def data_filter(item: VlpnDataItem): | 576 | global_step_offset = args.global_step |
| 577 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | ||
| 578 | basepath = Path(args.output_dir).joinpath(slugify(args.project), now) | ||
| 579 | basepath.mkdir(parents=True, exist_ok=True) | ||
| 580 | |||
| 581 | accelerator = Accelerator( | ||
| 582 | log_with=LoggerType.TENSORBOARD, | ||
| 583 | logging_dir=f"{basepath}", | ||
| 584 | gradient_accumulation_steps=args.gradient_accumulation_steps, | ||
| 585 | mixed_precision=args.mixed_precision | ||
| 586 | ) | ||
| 587 | |||
| 588 | logging.basicConfig(filename=basepath.joinpath("log.txt"), level=logging.DEBUG) | ||
| 589 | |||
| 590 | args.seed = args.seed or (torch.random.seed() >> 32) | ||
| 591 | set_seed(args.seed) | ||
| 592 | |||
| 593 | save_args(basepath, args) | ||
| 594 | |||
| 595 | tokenizer, text_encoder, vae, unet, noise_scheduler, sample_scheduler, embeddings = get_models( | ||
| 596 | args.pretrained_model_name_or_path) | ||
| 597 | |||
| 598 | tokenizer.set_use_vector_shuffle(args.vector_shuffle) | ||
| 599 | tokenizer.set_dropout(args.vector_dropout) | ||
| 600 | |||
| 601 | vae.enable_slicing() | ||
| 602 | vae.set_use_memory_efficient_attention_xformers(True) | ||
| 603 | unet.set_use_memory_efficient_attention_xformers(True) | ||
| 604 | |||
| 605 | if args.gradient_checkpointing: | ||
| 606 | unet.enable_gradient_checkpointing() | ||
| 607 | text_encoder.gradient_checkpointing_enable() | ||
| 608 | |||
| 609 | if args.embeddings_dir is not None: | ||
| 610 | embeddings_dir = Path(args.embeddings_dir) | ||
| 611 | if not embeddings_dir.exists() or not embeddings_dir.is_dir(): | ||
| 612 | raise ValueError("--embeddings_dir must point to an existing directory") | ||
| 613 | |||
| 614 | added_tokens, added_ids = load_embeddings_from_dir(tokenizer, embeddings, embeddings_dir) | ||
| 615 | print(f"Added {len(added_tokens)} tokens from embeddings dir: {list(zip(added_tokens, added_ids))}") | ||
| 616 | |||
| 617 | placeholder_token_ids = add_placeholder_tokens( | ||
| 618 | tokenizer=tokenizer, | ||
| 619 | embeddings=embeddings, | ||
| 620 | placeholder_tokens=args.placeholder_tokens, | ||
| 621 | initializer_tokens=args.initializer_tokens, | ||
| 622 | num_vectors=args.num_vectors | ||
| 623 | ) | ||
| 624 | |||
| 625 | print(f"Added {len(placeholder_token_ids)} new tokens: {list(zip(args.placeholder_tokens, placeholder_token_ids))}") | ||
| 626 | |||
| 627 | if args.use_ema: | ||
| 628 | ema_embeddings = EMAModel( | ||
| 629 | text_encoder.text_model.embeddings.temp_token_embedding.parameters(), | ||
| 630 | inv_gamma=args.ema_inv_gamma, | ||
| 631 | power=args.ema_power, | ||
| 632 | max_value=args.ema_max_decay, | ||
| 633 | ) | ||
| 634 | else: | ||
| 635 | ema_embeddings = None | ||
| 636 | |||
| 637 | vae.requires_grad_(False) | ||
| 638 | unet.requires_grad_(False) | ||
| 639 | |||
| 640 | text_encoder.text_model.encoder.requires_grad_(False) | ||
| 641 | text_encoder.text_model.final_layer_norm.requires_grad_(False) | ||
| 642 | text_encoder.text_model.embeddings.position_embedding.requires_grad_(False) | ||
| 643 | text_encoder.text_model.embeddings.token_embedding.requires_grad_(False) | ||
| 644 | |||
| 645 | if args.scale_lr: | ||
| 646 | args.learning_rate = ( | ||
| 647 | args.learning_rate * args.gradient_accumulation_steps * | ||
| 648 | args.train_batch_size * accelerator.num_processes | ||
| 649 | ) | ||
| 650 | |||
| 651 | if args.find_lr: | ||
| 652 | args.learning_rate = 1e-5 | ||
| 653 | |||
| 654 | if args.use_8bit_adam: | ||
| 655 | try: | ||
| 656 | import bitsandbytes as bnb | ||
| 657 | except ImportError: | ||
| 658 | raise ImportError("To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`.") | ||
| 659 | |||
| 660 | optimizer_class = bnb.optim.AdamW8bit | ||
| 661 | else: | ||
| 662 | optimizer_class = torch.optim.AdamW | ||
| 663 | |||
| 664 | optimizer = optimizer_class( | ||
| 665 | text_encoder.text_model.embeddings.temp_token_embedding.parameters(), | ||
| 666 | lr=args.learning_rate, | ||
| 667 | betas=(args.adam_beta1, args.adam_beta2), | ||
| 668 | weight_decay=args.adam_weight_decay, | ||
| 669 | eps=args.adam_epsilon, | ||
| 670 | amsgrad=args.adam_amsgrad, | ||
| 671 | ) | ||
| 672 | |||
| 673 | weight_dtype = torch.float32 | ||
| 674 | if args.mixed_precision == "fp16": | ||
| 675 | weight_dtype = torch.float16 | ||
| 676 | elif args.mixed_precision == "bf16": | ||
| 677 | weight_dtype = torch.bfloat16 | ||
| 678 | |||
| 679 | def keyword_filter(item: VlpnDataItem): | ||
| 482 | cond1 = any( | 680 | cond1 = any( |
| 483 | keyword in part | 681 | keyword in part |
| 484 | for keyword in args.placeholder_token | 682 | for keyword in args.placeholder_tokens |
| 485 | for part in item.prompt | 683 | for part in item.prompt |
| 486 | ) | 684 | ) |
| 487 | cond3 = args.collection is None or args.collection in item.collection | 685 | cond3 = args.collection is None or args.collection in item.collection |
| @@ -491,79 +689,186 @@ def main(): | |||
| 491 | ) | 689 | ) |
| 492 | return cond1 and cond3 and cond4 | 690 | return cond1 and cond3 and cond4 |
| 493 | 691 | ||
| 494 | setup = train_setup( | 692 | datamodule = VlpnDataModule( |
| 495 | output_dir=args.output_dir, | ||
| 496 | project=args.project, | ||
| 497 | pretrained_model_name_or_path=args.pretrained_model_name_or_path, | ||
| 498 | learning_rate=args.learning_rate, | ||
| 499 | data_file=args.train_data_file, | 693 | data_file=args.train_data_file, |
| 500 | gradient_accumulation_steps=args.gradient_accumulation_steps, | 694 | batch_size=args.train_batch_size, |
| 501 | mixed_precision=args.mixed_precision, | 695 | tokenizer=tokenizer, |
| 502 | seed=args.seed, | 696 | class_subdir=args.class_image_dir, |
| 503 | vector_shuffle=args.vector_shuffle, | ||
| 504 | vector_dropout=args.vector_dropout, | ||
| 505 | gradient_checkpointing=args.gradient_checkpointing, | ||
| 506 | embeddings_dir=args.embeddings_dir, | ||
| 507 | placeholder_token=args.placeholder_token, | ||
| 508 | initializer_token=args.initializer_token, | ||
| 509 | num_vectors=args.num_vectors, | ||
| 510 | scale_lr=args.scale_lr, | ||
| 511 | use_8bit_adam=args.use_8bit_adam, | ||
| 512 | train_batch_size=args.train_batch_size, | ||
| 513 | class_image_dir=args.class_image_dir, | ||
| 514 | num_class_images=args.num_class_images, | 697 | num_class_images=args.num_class_images, |
| 515 | resolution=args.resolution, | 698 | size=args.resolution, |
| 516 | num_buckets=args.num_buckets, | 699 | num_buckets=args.num_buckets, |
| 517 | progressive_buckets=args.progressive_buckets, | 700 | progressive_buckets=args.progressive_buckets, |
| 518 | bucket_step_size=args.bucket_step_size, | 701 | bucket_step_size=args.bucket_step_size, |
| 519 | bucket_max_pixels=args.bucket_max_pixels, | 702 | bucket_max_pixels=args.bucket_max_pixels, |
| 520 | tag_dropout=args.tag_dropout, | 703 | dropout=args.tag_dropout, |
| 521 | tag_shuffle=not args.no_tag_shuffle, | 704 | shuffle=not args.no_tag_shuffle, |
| 522 | data_template=args.train_data_template, | 705 | template_key=args.train_data_template, |
| 523 | valid_set_size=args.valid_set_size, | 706 | valid_set_size=args.valid_set_size, |
| 524 | valid_set_repeat=args.valid_set_repeat, | 707 | valid_set_repeat=args.valid_set_repeat, |
| 525 | data_filter=data_filter, | 708 | num_workers=args.dataloader_num_workers, |
| 526 | sample_image_size=args.sample_image_size, | 709 | seed=args.seed, |
| 527 | sample_batch_size=args.sample_batch_size, | 710 | filter=keyword_filter, |
| 528 | sample_steps=args.sample_steps, | 711 | dtype=weight_dtype |
| 529 | ) | 712 | ) |
| 713 | datamodule.setup() | ||
| 530 | 714 | ||
| 531 | save_args(setup.output_dir, args) | 715 | train_dataloader = datamodule.train_dataloader |
| 716 | val_dataloader = datamodule.val_dataloader | ||
| 532 | 717 | ||
| 533 | train_ti( | 718 | if args.num_class_images != 0: |
| 534 | setup=setup, | 719 | generate_class_images( |
| 535 | num_train_epochs=args.num_train_epochs, | 720 | accelerator, |
| 536 | num_class_images=args.num_class_images, | 721 | text_encoder, |
| 537 | prior_loss_weight=args.prior_loss_weight, | 722 | vae, |
| 538 | use_ema=args.use_ema, | 723 | unet, |
| 539 | ema_inv_gamma=args.ema_inv_gamma, | 724 | tokenizer, |
| 540 | ema_power=args.ema_power, | 725 | sample_scheduler, |
| 541 | ema_max_decay=args.ema_max_decay, | 726 | datamodule.data_train, |
| 542 | adam_beta1=args.adam_beta1, | 727 | args.sample_batch_size, |
| 543 | adam_beta2=args.adam_beta2, | 728 | args.sample_image_size, |
| 544 | adam_weight_decay=args.adam_weight_decay, | 729 | args.sample_steps |
| 545 | adam_epsilon=args.adam_epsilon, | 730 | ) |
| 546 | adam_amsgrad=args.adam_amsgrad, | 731 | |
| 547 | lr_scheduler=args.lr_scheduler, | 732 | if args.find_lr: |
| 548 | lr_min_lr=args.lr_min_lr, | 733 | lr_scheduler = None |
| 549 | lr_warmup_func=args.lr_warmup_func, | 734 | else: |
| 550 | lr_annealing_func=args.lr_annealing_func, | 735 | lr_scheduler = get_scheduler( |
| 551 | lr_warmup_exp=args.lr_warmup_exp, | 736 | args.lr_scheduler, |
| 552 | lr_annealing_exp=args.lr_annealing_exp, | 737 | optimizer=optimizer, |
| 553 | lr_cycles=args.lr_cycles, | 738 | num_training_steps_per_epoch=len(train_dataloader), |
| 554 | lr_warmup_epochs=args.lr_warmup_epochs, | 739 | gradient_accumulation_steps=args.gradient_accumulation_steps, |
| 555 | emb_decay_target=args.emb_decay_target, | 740 | min_lr=args.lr_min_lr, |
| 556 | emb_decay_factor=args.emb_decay_factor, | 741 | warmup_func=args.lr_warmup_func, |
| 557 | emb_decay_start=args.emb_decay_start, | 742 | annealing_func=args.lr_annealing_func, |
| 743 | warmup_exp=args.lr_warmup_exp, | ||
| 744 | annealing_exp=args.lr_annealing_exp, | ||
| 745 | cycles=args.lr_cycles, | ||
| 746 | train_epochs=args.num_train_epochs, | ||
| 747 | warmup_epochs=args.lr_warmup_epochs, | ||
| 748 | ) | ||
| 749 | |||
| 750 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( | ||
| 751 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler | ||
| 752 | ) | ||
| 753 | |||
| 754 | vae.to(accelerator.device, dtype=weight_dtype) | ||
| 755 | unet.to(accelerator.device, dtype=weight_dtype) | ||
| 756 | |||
| 757 | if args.use_ema: | ||
| 758 | ema_embeddings.to(accelerator.device) | ||
| 759 | |||
| 760 | if args.gradient_checkpointing: | ||
| 761 | unet.train() | ||
| 762 | else: | ||
| 763 | unet.eval() | ||
| 764 | |||
| 765 | @contextmanager | ||
| 766 | def on_train(epoch: int): | ||
| 767 | try: | ||
| 768 | tokenizer.train() | ||
| 769 | yield | ||
| 770 | finally: | ||
| 771 | pass | ||
| 772 | |||
| 773 | @contextmanager | ||
| 774 | def on_eval(): | ||
| 775 | try: | ||
| 776 | tokenizer.eval() | ||
| 777 | |||
| 778 | ema_context = ema_embeddings.apply_temporary( | ||
| 779 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) if args.use_ema else nullcontext() | ||
| 780 | |||
| 781 | with ema_context: | ||
| 782 | yield | ||
| 783 | finally: | ||
| 784 | pass | ||
| 785 | |||
| 786 | @torch.no_grad() | ||
| 787 | def on_after_optimize(lr: float): | ||
| 788 | text_encoder.text_model.embeddings.normalize( | ||
| 789 | args.emb_decay_target, | ||
| 790 | min(1.0, max(0.0, args.emb_decay_factor * ((lr - args.emb_decay_start) / (args.learning_rate - args.emb_decay_start)))) | ||
| 791 | ) | ||
| 792 | |||
| 793 | if args.use_ema: | ||
| 794 | ema_embeddings.step(text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
| 795 | |||
| 796 | def on_log(): | ||
| 797 | if args.use_ema: | ||
| 798 | return {"ema_decay": ema_embeddings.decay} | ||
| 799 | return {} | ||
| 800 | |||
| 801 | loss_step_ = partial( | ||
| 802 | loss_step, | ||
| 803 | vae, | ||
| 804 | noise_scheduler, | ||
| 805 | unet, | ||
| 806 | text_encoder, | ||
| 807 | args.num_class_images != 0, | ||
| 808 | args.prior_loss_weight, | ||
| 809 | args.seed, | ||
| 810 | ) | ||
| 811 | |||
| 812 | checkpointer = Checkpointer( | ||
| 813 | weight_dtype=weight_dtype, | ||
| 814 | train_dataloader=train_dataloader, | ||
| 815 | val_dataloader=val_dataloader, | ||
| 816 | accelerator=accelerator, | ||
| 817 | vae=vae, | ||
| 818 | unet=unet, | ||
| 819 | tokenizer=tokenizer, | ||
| 820 | text_encoder=text_encoder, | ||
| 821 | ema_embeddings=ema_embeddings, | ||
| 822 | scheduler=sample_scheduler, | ||
| 823 | placeholder_tokens=args.placeholder_tokens, | ||
| 824 | placeholder_token_ids=placeholder_token_ids, | ||
| 825 | output_dir=basepath, | ||
| 558 | sample_image_size=args.sample_image_size, | 826 | sample_image_size=args.sample_image_size, |
| 559 | sample_batch_size=args.sample_batch_size, | 827 | sample_batch_size=args.sample_batch_size, |
| 560 | sample_batches=args.sample_batches, | 828 | sample_batches=args.sample_batches, |
| 561 | sample_frequency=args.sample_frequency, | 829 | seed=args.seed |
| 562 | sample_steps=args.sample_steps, | ||
| 563 | checkpoint_frequency=args.checkpoint_frequency, | ||
| 564 | global_step_offset=args.global_step, | ||
| 565 | ) | 830 | ) |
| 566 | 831 | ||
| 832 | if accelerator.is_main_process: | ||
| 833 | accelerator.init_trackers("textual_inversion") | ||
| 834 | |||
| 835 | if args.find_lr: | ||
| 836 | lr_finder = LRFinder( | ||
| 837 | accelerator=accelerator, | ||
| 838 | optimizer=optimizer, | ||
| 839 | model=text_encoder, | ||
| 840 | train_dataloader=train_dataloader, | ||
| 841 | val_dataloader=val_dataloader, | ||
| 842 | loss_step=loss_step_, | ||
| 843 | on_train=on_train, | ||
| 844 | on_eval=on_eval, | ||
| 845 | on_after_optimize=on_after_optimize, | ||
| 846 | ) | ||
| 847 | lr_finder.run(num_epochs=100, end_lr=1e3) | ||
| 848 | |||
| 849 | plt.savefig(basepath.joinpath("lr.png"), dpi=300) | ||
| 850 | plt.close() | ||
| 851 | else: | ||
| 852 | train_loop( | ||
| 853 | accelerator=accelerator, | ||
| 854 | optimizer=optimizer, | ||
| 855 | lr_scheduler=lr_scheduler, | ||
| 856 | model=text_encoder, | ||
| 857 | checkpointer=checkpointer, | ||
| 858 | train_dataloader=train_dataloader, | ||
| 859 | val_dataloader=val_dataloader, | ||
| 860 | loss_step=loss_step_, | ||
| 861 | sample_frequency=args.sample_frequency, | ||
| 862 | sample_steps=args.sample_steps, | ||
| 863 | checkpoint_frequency=args.checkpoint_frequency, | ||
| 864 | global_step_offset=global_step_offset, | ||
| 865 | num_epochs=args.num_train_epochs, | ||
| 866 | on_log=on_log, | ||
| 867 | on_train=on_train, | ||
| 868 | on_after_optimize=on_after_optimize, | ||
| 869 | on_eval=on_eval | ||
| 870 | ) | ||
| 871 | |||
| 567 | 872 | ||
| 568 | if __name__ == "__main__": | 873 | if __name__ == "__main__": |
| 569 | main() | 874 | main() |
diff --git a/training/common.py b/training/common.py index 73ce814..b6964a3 100644 --- a/training/common.py +++ b/training/common.py | |||
| @@ -1,52 +1,24 @@ | |||
| 1 | import math | 1 | import math |
| 2 | from pathlib import Path | ||
| 3 | from contextlib import _GeneratorContextManager, nullcontext | 2 | from contextlib import _GeneratorContextManager, nullcontext |
| 4 | from typing import Callable, Any, Tuple, Union, Literal, Optional, NamedTuple | 3 | from typing import Callable, Any, Tuple, Union |
| 5 | import datetime | ||
| 6 | import logging | ||
| 7 | 4 | ||
| 8 | import torch | 5 | import torch |
| 9 | import torch.nn.functional as F | 6 | import torch.nn.functional as F |
| 10 | from torch.utils.data import DataLoader | 7 | from torch.utils.data import DataLoader |
| 11 | 8 | ||
| 12 | from accelerate import Accelerator | 9 | from accelerate import Accelerator |
| 13 | from accelerate.utils import LoggerType, set_seed | ||
| 14 | from transformers import CLIPTextModel | 10 | from transformers import CLIPTextModel |
| 15 | from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel, DPMSolverMultistepScheduler | 11 | from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel, DPMSolverMultistepScheduler |
| 16 | from diffusers.optimization import get_scheduler as get_scheduler_, get_cosine_with_hard_restarts_schedule_with_warmup | ||
| 17 | 12 | ||
| 18 | from tqdm.auto import tqdm | 13 | from tqdm.auto import tqdm |
| 19 | from slugify import slugify | ||
| 20 | 14 | ||
| 21 | from data.csv import VlpnDataModule, VlpnDataItem | ||
| 22 | from util import load_embeddings_from_dir | ||
| 23 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | 15 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion |
| 24 | from models.clip.embeddings import patch_managed_embeddings | 16 | from models.clip.embeddings import ManagedCLIPTextEmbeddings, patch_managed_embeddings |
| 25 | from models.clip.util import get_extended_embeddings | 17 | from models.clip.util import get_extended_embeddings |
| 26 | from models.clip.tokenizer import MultiCLIPTokenizer | 18 | from models.clip.tokenizer import MultiCLIPTokenizer |
| 27 | from training.optimization import get_one_cycle_schedule | ||
| 28 | from training.util import AverageMeter, CheckpointerBase | 19 | from training.util import AverageMeter, CheckpointerBase |
| 29 | 20 | ||
| 30 | 21 | ||
| 31 | class TrainingSetup(NamedTuple): | ||
| 32 | accelerator: Accelerator | ||
| 33 | tokenizer: MultiCLIPTokenizer | ||
| 34 | text_encoder: CLIPTextModel | ||
| 35 | vae: AutoencoderKL | ||
| 36 | unet: UNet2DConditionModel | ||
| 37 | noise_scheduler: DDPMScheduler | ||
| 38 | checkpoint_scheduler: DPMSolverMultistepScheduler | ||
| 39 | optimizer_class: Callable | ||
| 40 | learning_rate: float | ||
| 41 | weight_dtype: torch.dtype | ||
| 42 | output_dir: Path | ||
| 43 | seed: int | ||
| 44 | train_dataloader: DataLoader | ||
| 45 | val_dataloader: DataLoader | ||
| 46 | placeholder_token: list[str] | ||
| 47 | placeholder_token_ids: list[list[int]] | ||
| 48 | |||
| 49 | |||
| 50 | def noop(*args, **kwards): | 22 | def noop(*args, **kwards): |
| 51 | pass | 23 | pass |
| 52 | 24 | ||
| @@ -59,57 +31,6 @@ def noop_on_log(): | |||
| 59 | return {} | 31 | return {} |
| 60 | 32 | ||
| 61 | 33 | ||
| 62 | def get_scheduler( | ||
| 63 | id: str, | ||
| 64 | optimizer: torch.optim.Optimizer, | ||
| 65 | num_training_steps_per_epoch: int, | ||
| 66 | gradient_accumulation_steps: int, | ||
| 67 | min_lr: float = 0.04, | ||
| 68 | warmup_func: str = "cos", | ||
| 69 | annealing_func: str = "cos", | ||
| 70 | warmup_exp: int = 1, | ||
| 71 | annealing_exp: int = 1, | ||
| 72 | cycles: int = 1, | ||
| 73 | train_epochs: int = 100, | ||
| 74 | warmup_epochs: int = 10, | ||
| 75 | ): | ||
| 76 | num_training_steps_per_epoch = math.ceil( | ||
| 77 | num_training_steps_per_epoch / gradient_accumulation_steps | ||
| 78 | ) * gradient_accumulation_steps | ||
| 79 | num_training_steps = train_epochs * num_training_steps_per_epoch | ||
| 80 | num_warmup_steps = warmup_epochs * num_training_steps_per_epoch | ||
| 81 | |||
| 82 | if id == "one_cycle": | ||
| 83 | lr_scheduler = get_one_cycle_schedule( | ||
| 84 | optimizer=optimizer, | ||
| 85 | num_training_steps=num_training_steps, | ||
| 86 | warmup=warmup_func, | ||
| 87 | annealing=annealing_func, | ||
| 88 | warmup_exp=warmup_exp, | ||
| 89 | annealing_exp=annealing_exp, | ||
| 90 | min_lr=min_lr, | ||
| 91 | ) | ||
| 92 | elif id == "cosine_with_restarts": | ||
| 93 | if cycles is None: | ||
| 94 | cycles = math.ceil(math.sqrt(((num_training_steps - num_warmup_steps) / num_training_steps_per_epoch))) | ||
| 95 | |||
| 96 | lr_scheduler = get_cosine_with_hard_restarts_schedule_with_warmup( | ||
| 97 | optimizer=optimizer, | ||
| 98 | num_warmup_steps=num_warmup_steps, | ||
| 99 | num_training_steps=num_training_steps, | ||
| 100 | num_cycles=cycles, | ||
| 101 | ) | ||
| 102 | else: | ||
| 103 | lr_scheduler = get_scheduler_( | ||
| 104 | id, | ||
| 105 | optimizer=optimizer, | ||
| 106 | num_warmup_steps=num_warmup_steps, | ||
| 107 | num_training_steps=num_training_steps, | ||
| 108 | ) | ||
| 109 | |||
| 110 | return lr_scheduler | ||
| 111 | |||
| 112 | |||
| 113 | def generate_class_images( | 34 | def generate_class_images( |
| 114 | accelerator, | 35 | accelerator, |
| 115 | text_encoder, | 36 | text_encoder, |
| @@ -162,194 +83,43 @@ def generate_class_images( | |||
| 162 | torch.cuda.empty_cache() | 83 | torch.cuda.empty_cache() |
| 163 | 84 | ||
| 164 | 85 | ||
| 165 | def train_setup( | 86 | def get_models(pretrained_model_name_or_path: str): |
| 166 | output_dir: str, | ||
| 167 | project: str, | ||
| 168 | pretrained_model_name_or_path: str, | ||
| 169 | learning_rate: float, | ||
| 170 | data_file: str, | ||
| 171 | gradient_accumulation_steps: int = 1, | ||
| 172 | mixed_precision: Literal["no", "fp16", "bf16"] = "no", | ||
| 173 | seed: Optional[int] = None, | ||
| 174 | vector_shuffle: Union[bool, Literal["all", "trailing", "leading", "between", "off"]] = "auto", | ||
| 175 | vector_dropout: float = 0.1, | ||
| 176 | gradient_checkpointing: bool = True, | ||
| 177 | embeddings_dir: Optional[str] = None, | ||
| 178 | placeholder_token: list[str] = [], | ||
| 179 | initializer_token: list[str] = [], | ||
| 180 | num_vectors: int = 1, | ||
| 181 | scale_lr: bool = False, | ||
| 182 | use_8bit_adam: bool = False, | ||
| 183 | train_batch_size: int = 1, | ||
| 184 | class_image_dir: Optional[str] = None, | ||
| 185 | num_class_images: int = 0, | ||
| 186 | resolution: int = 768, | ||
| 187 | num_buckets: int = 0, | ||
| 188 | progressive_buckets: bool = False, | ||
| 189 | bucket_step_size: int = 64, | ||
| 190 | bucket_max_pixels: Optional[int] = None, | ||
| 191 | tag_dropout: float = 0.1, | ||
| 192 | tag_shuffle: bool = True, | ||
| 193 | data_template: str = "template", | ||
| 194 | valid_set_size: Optional[int] = None, | ||
| 195 | valid_set_repeat: int = 1, | ||
| 196 | data_filter: Optional[Callable[[VlpnDataItem], bool]] = None, | ||
| 197 | sample_batch_size: int = 1, | ||
| 198 | sample_image_size: int = 768, | ||
| 199 | sample_steps: int = 20, | ||
| 200 | ) -> TrainingSetup: | ||
| 201 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | ||
| 202 | output_dir = Path(output_dir).joinpath(slugify(project), now) | ||
| 203 | output_dir.mkdir(parents=True, exist_ok=True) | ||
| 204 | |||
| 205 | accelerator = Accelerator( | ||
| 206 | log_with=LoggerType.TENSORBOARD, | ||
| 207 | logging_dir=f"{output_dir}", | ||
| 208 | gradient_accumulation_steps=gradient_accumulation_steps, | ||
| 209 | mixed_precision=mixed_precision | ||
| 210 | ) | ||
| 211 | |||
| 212 | logging.basicConfig(filename=output_dir.joinpath("log.txt"), level=logging.DEBUG) | ||
| 213 | |||
| 214 | seed = seed or (torch.random.seed() >> 32) | ||
| 215 | set_seed(seed) | ||
| 216 | |||
| 217 | # Load the tokenizer and add the placeholder token as a additional special token | ||
| 218 | tokenizer = MultiCLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder='tokenizer') | 87 | tokenizer = MultiCLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder='tokenizer') |
| 219 | tokenizer.set_use_vector_shuffle(vector_shuffle) | ||
| 220 | tokenizer.set_dropout(vector_dropout) | ||
| 221 | |||
| 222 | # Load models and create wrapper for stable diffusion | ||
| 223 | text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path, subfolder='text_encoder') | 88 | text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path, subfolder='text_encoder') |
| 224 | vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder='vae') | 89 | vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder='vae') |
| 225 | unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder='unet') | 90 | unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder='unet') |
| 226 | noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder='scheduler') | 91 | noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder='scheduler') |
| 227 | checkpoint_scheduler = DPMSolverMultistepScheduler.from_pretrained( | 92 | sample_scheduler = DPMSolverMultistepScheduler.from_pretrained( |
| 228 | pretrained_model_name_or_path, subfolder='scheduler') | 93 | pretrained_model_name_or_path, subfolder='scheduler') |
| 229 | 94 | ||
| 230 | vae.enable_slicing() | 95 | vae.enable_slicing() |
| 231 | vae.set_use_memory_efficient_attention_xformers(True) | 96 | vae.set_use_memory_efficient_attention_xformers(True) |
| 232 | unet.set_use_memory_efficient_attention_xformers(True) | 97 | unet.set_use_memory_efficient_attention_xformers(True) |
| 233 | 98 | ||
| 234 | if gradient_checkpointing: | ||
| 235 | unet.enable_gradient_checkpointing() | ||
| 236 | text_encoder.gradient_checkpointing_enable() | ||
| 237 | |||
| 238 | embeddings = patch_managed_embeddings(text_encoder) | 99 | embeddings = patch_managed_embeddings(text_encoder) |
| 239 | 100 | ||
| 240 | if embeddings_dir is not None: | 101 | return tokenizer, text_encoder, vae, unet, noise_scheduler, sample_scheduler, embeddings |
| 241 | embeddings_dir = Path(embeddings_dir) | ||
| 242 | if not embeddings_dir.exists() or not embeddings_dir.is_dir(): | ||
| 243 | raise ValueError("--embeddings_dir must point to an existing directory") | ||
| 244 | 102 | ||
| 245 | added_tokens, added_ids = load_embeddings_from_dir(tokenizer, embeddings, embeddings_dir) | ||
| 246 | print(f"Added {len(added_tokens)} tokens from embeddings dir: {list(zip(added_tokens, added_ids))}") | ||
| 247 | 103 | ||
| 248 | # Convert the initializer_token, placeholder_token to ids | 104 | def add_placeholder_tokens( |
| 105 | tokenizer: MultiCLIPTokenizer, | ||
| 106 | embeddings: ManagedCLIPTextEmbeddings, | ||
| 107 | placeholder_tokens: list[str], | ||
| 108 | initializer_tokens: list[str], | ||
| 109 | num_vectors: Union[list[int], int] | ||
| 110 | ): | ||
| 249 | initializer_token_ids = [ | 111 | initializer_token_ids = [ |
| 250 | tokenizer.encode(token, add_special_tokens=False) | 112 | tokenizer.encode(token, add_special_tokens=False) |
| 251 | for token in initializer_token | 113 | for token in initializer_tokens |
| 252 | ] | 114 | ] |
| 115 | placeholder_token_ids = tokenizer.add_multi_tokens(placeholder_tokens, num_vectors) | ||
| 253 | 116 | ||
| 254 | placeholder_token_ids = tokenizer.add_multi_tokens(placeholder_token, num_vectors) | ||
| 255 | embeddings.resize(len(tokenizer)) | 117 | embeddings.resize(len(tokenizer)) |
| 256 | 118 | ||
| 257 | for (new_id, init_ids) in zip(placeholder_token_ids, initializer_token_ids): | 119 | for (placeholder_token_id, initializer_token_id) in zip(placeholder_token_ids, initializer_token_ids): |
| 258 | embeddings.add_embed(new_id, init_ids) | 120 | embeddings.add_embed(placeholder_token_id, initializer_token_id) |
| 259 | |||
| 260 | init_ratios = [ | ||
| 261 | f"{len(init_ids)} / {len(new_id)}" | ||
| 262 | for new_id, init_ids in zip(placeholder_token_ids, initializer_token_ids) | ||
| 263 | ] | ||
| 264 | |||
| 265 | print(f"Added {len(placeholder_token_ids)} new tokens: {list(zip(placeholder_token, placeholder_token_ids, init_ratios))}") | ||
| 266 | 121 | ||
| 267 | vae.requires_grad_(False) | 122 | return placeholder_token_ids |
| 268 | unet.requires_grad_(False) | ||
| 269 | text_encoder.requires_grad_(False) | ||
| 270 | |||
| 271 | if scale_lr: | ||
| 272 | learning_rate = ( | ||
| 273 | learning_rate * gradient_accumulation_steps * | ||
| 274 | train_batch_size * accelerator.num_processes | ||
| 275 | ) | ||
| 276 | |||
| 277 | # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | ||
| 278 | if use_8bit_adam: | ||
| 279 | try: | ||
| 280 | import bitsandbytes as bnb | ||
| 281 | except ImportError: | ||
| 282 | raise ImportError("To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`.") | ||
| 283 | |||
| 284 | optimizer_class = bnb.optim.AdamW8bit | ||
| 285 | else: | ||
| 286 | optimizer_class = torch.optim.AdamW | ||
| 287 | |||
| 288 | weight_dtype = torch.float32 | ||
| 289 | if mixed_precision == "fp16": | ||
| 290 | weight_dtype = torch.float16 | ||
| 291 | elif mixed_precision == "bf16": | ||
| 292 | weight_dtype = torch.bfloat16 | ||
| 293 | |||
| 294 | datamodule = VlpnDataModule( | ||
| 295 | data_file=data_file, | ||
| 296 | batch_size=train_batch_size, | ||
| 297 | tokenizer=tokenizer, | ||
| 298 | class_subdir=class_image_dir, | ||
| 299 | num_class_images=num_class_images, | ||
| 300 | size=resolution, | ||
| 301 | num_buckets=num_buckets, | ||
| 302 | progressive_buckets=progressive_buckets, | ||
| 303 | bucket_step_size=bucket_step_size, | ||
| 304 | bucket_max_pixels=bucket_max_pixels, | ||
| 305 | dropout=tag_dropout, | ||
| 306 | shuffle=tag_shuffle, | ||
| 307 | template_key=data_template, | ||
| 308 | valid_set_size=valid_set_size, | ||
| 309 | valid_set_repeat=valid_set_repeat, | ||
| 310 | seed=seed, | ||
| 311 | filter=data_filter, | ||
| 312 | dtype=weight_dtype | ||
| 313 | ) | ||
| 314 | datamodule.setup() | ||
| 315 | |||
| 316 | train_dataloader = datamodule.train_dataloader | ||
| 317 | val_dataloader = datamodule.val_dataloader | ||
| 318 | |||
| 319 | train_dataloader, val_dataloader = accelerator.prepare(train_dataloader, val_dataloader) | ||
| 320 | |||
| 321 | if num_class_images != 0: | ||
| 322 | generate_class_images( | ||
| 323 | accelerator, | ||
| 324 | text_encoder, | ||
| 325 | vae, | ||
| 326 | unet, | ||
| 327 | tokenizer, | ||
| 328 | checkpoint_scheduler, | ||
| 329 | datamodule.data_train, | ||
| 330 | sample_batch_size, | ||
| 331 | sample_image_size, | ||
| 332 | sample_steps | ||
| 333 | ) | ||
| 334 | |||
| 335 | return TrainingSetup( | ||
| 336 | accelerator=accelerator, | ||
| 337 | tokenizer=tokenizer, | ||
| 338 | text_encoder=text_encoder, | ||
| 339 | vae=vae, | ||
| 340 | unet=unet, | ||
| 341 | noise_scheduler=noise_scheduler, | ||
| 342 | checkpoint_scheduler=checkpoint_scheduler, | ||
| 343 | optimizer_class=optimizer_class, | ||
| 344 | learning_rate=learning_rate, | ||
| 345 | output_dir=output_dir, | ||
| 346 | weight_dtype=weight_dtype, | ||
| 347 | seed=seed, | ||
| 348 | train_dataloader=train_dataloader, | ||
| 349 | val_dataloader=val_dataloader, | ||
| 350 | placeholder_token=placeholder_token, | ||
| 351 | placeholder_token_ids=placeholder_token_ids | ||
| 352 | ) | ||
| 353 | 123 | ||
| 354 | 124 | ||
| 355 | def loss_step( | 125 | def loss_step( |
diff --git a/training/modules/dreambooth.py b/training/modules/dreambooth.py deleted file mode 100644 index e69de29..0000000 --- a/training/modules/dreambooth.py +++ /dev/null | |||
diff --git a/training/modules/lora.py b/training/modules/lora.py deleted file mode 100644 index e69de29..0000000 --- a/training/modules/lora.py +++ /dev/null | |||
diff --git a/training/modules/ti.py b/training/modules/ti.py deleted file mode 100644 index 2db6f88..0000000 --- a/training/modules/ti.py +++ /dev/null | |||
| @@ -1,284 +0,0 @@ | |||
| 1 | from typing import Literal | ||
| 2 | from functools import partial | ||
| 3 | from contextlib import contextmanager, nullcontext | ||
| 4 | |||
| 5 | import torch | ||
| 6 | |||
| 7 | from slugify import slugify | ||
| 8 | |||
| 9 | from accelerate import Accelerator | ||
| 10 | from transformers import CLIPTextModel | ||
| 11 | from diffusers import AutoencoderKL, UNet2DConditionModel | ||
| 12 | |||
| 13 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | ||
| 14 | from models.clip.tokenizer import MultiCLIPTokenizer | ||
| 15 | |||
| 16 | from training.common import TrainingSetup, get_scheduler, train_loop, loss_step | ||
| 17 | from training.util import EMAModel, CheckpointerBase | ||
| 18 | |||
| 19 | |||
| 20 | class Checkpointer(CheckpointerBase): | ||
| 21 | def __init__( | ||
| 22 | self, | ||
| 23 | accelerator: Accelerator, | ||
| 24 | vae: AutoencoderKL, | ||
| 25 | unet: UNet2DConditionModel, | ||
| 26 | tokenizer: MultiCLIPTokenizer, | ||
| 27 | text_encoder: CLIPTextModel, | ||
| 28 | ema_embeddings: EMAModel, | ||
| 29 | weight_dtype: torch.dtype, | ||
| 30 | scheduler, | ||
| 31 | placeholder_token, | ||
| 32 | placeholder_token_ids, | ||
| 33 | *args, | ||
| 34 | **kwargs | ||
| 35 | ): | ||
| 36 | super().__init__(*args, **kwargs) | ||
| 37 | |||
| 38 | self.weight_dtype = weight_dtype | ||
| 39 | self.accelerator = accelerator | ||
| 40 | self.vae = vae | ||
| 41 | self.unet = unet | ||
| 42 | self.tokenizer = tokenizer | ||
| 43 | self.text_encoder = text_encoder | ||
| 44 | self.ema_embeddings = ema_embeddings | ||
| 45 | self.scheduler = scheduler | ||
| 46 | self.placeholder_token = placeholder_token | ||
| 47 | self.placeholder_token_ids = placeholder_token_ids | ||
| 48 | |||
| 49 | @torch.no_grad() | ||
| 50 | def checkpoint(self, step, postfix): | ||
| 51 | print("Saving checkpoint for step %d..." % step) | ||
| 52 | |||
| 53 | checkpoints_path = self.output_dir.joinpath("checkpoints") | ||
| 54 | checkpoints_path.mkdir(parents=True, exist_ok=True) | ||
| 55 | |||
| 56 | text_encoder = self.accelerator.unwrap_model(self.text_encoder) | ||
| 57 | |||
| 58 | ema_context = nullcontext() | ||
| 59 | if self.ema_embeddings is not None: | ||
| 60 | ema_context = self.ema_embeddings.apply_temporary( | ||
| 61 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
| 62 | |||
| 63 | with ema_context: | ||
| 64 | for (token, ids) in zip(self.placeholder_token, self.placeholder_token_ids): | ||
| 65 | text_encoder.text_model.embeddings.save_embed( | ||
| 66 | ids, | ||
| 67 | checkpoints_path.joinpath(f"{slugify(token)}_{step}_{postfix}.bin") | ||
| 68 | ) | ||
| 69 | |||
| 70 | del text_encoder | ||
| 71 | |||
| 72 | @torch.no_grad() | ||
| 73 | def save_samples(self, step, num_inference_steps, guidance_scale=7.5, eta=0.0): | ||
| 74 | text_encoder = self.accelerator.unwrap_model(self.text_encoder) | ||
| 75 | |||
| 76 | ema_context = nullcontext() | ||
| 77 | if self.ema_embeddings is not None: | ||
| 78 | ema_context = self.ema_embeddings.apply_temporary( | ||
| 79 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
| 80 | |||
| 81 | with ema_context: | ||
| 82 | orig_dtype = text_encoder.dtype | ||
| 83 | text_encoder.to(dtype=self.weight_dtype) | ||
| 84 | |||
| 85 | pipeline = VlpnStableDiffusion( | ||
| 86 | text_encoder=text_encoder, | ||
| 87 | vae=self.vae, | ||
| 88 | unet=self.unet, | ||
| 89 | tokenizer=self.tokenizer, | ||
| 90 | scheduler=self.scheduler, | ||
| 91 | ).to(self.accelerator.device) | ||
| 92 | pipeline.set_progress_bar_config(dynamic_ncols=True) | ||
| 93 | |||
| 94 | super().save_samples(pipeline, step, num_inference_steps, guidance_scale, eta) | ||
| 95 | |||
| 96 | text_encoder.to(dtype=orig_dtype) | ||
| 97 | |||
| 98 | del text_encoder | ||
| 99 | del pipeline | ||
| 100 | |||
| 101 | if torch.cuda.is_available(): | ||
| 102 | torch.cuda.empty_cache() | ||
| 103 | |||
| 104 | |||
| 105 | def train_ti( | ||
| 106 | setup: TrainingSetup, | ||
| 107 | num_train_epochs: int = 100, | ||
| 108 | num_class_images: int = 0, | ||
| 109 | prior_loss_weight: float = 1.0, | ||
| 110 | use_ema: bool = False, | ||
| 111 | ema_inv_gamma: float = 1.0, | ||
| 112 | ema_power: float = 4/5, | ||
| 113 | ema_max_decay: float = .9999, | ||
| 114 | adam_beta1: float = 0.9, | ||
| 115 | adam_beta2: float = 0.999, | ||
| 116 | adam_weight_decay: float = 0, | ||
| 117 | adam_epsilon: float = 1e-08, | ||
| 118 | adam_amsgrad: bool = False, | ||
| 119 | lr_scheduler: Literal[ | ||
| 120 | "linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup", "one_cycle" | ||
| 121 | ] = "one_cycle", | ||
| 122 | lr_min_lr: float = 0.04, | ||
| 123 | lr_warmup_func: Literal["linear", "cos"] = "cos", | ||
| 124 | lr_annealing_func: Literal["linear", "half_cos", "cos"] = "cos", | ||
| 125 | lr_warmup_exp: int = 1, | ||
| 126 | lr_annealing_exp: int = 1, | ||
| 127 | lr_cycles: int = 1, | ||
| 128 | lr_warmup_epochs: int = 10, | ||
| 129 | emb_decay_target: float = 0.4, | ||
| 130 | emb_decay_factor: float = 1, | ||
| 131 | emb_decay_start: float = 1e-4, | ||
| 132 | sample_image_size: int = 768, | ||
| 133 | sample_batch_size: int = 1, | ||
| 134 | sample_batches: int = 1, | ||
| 135 | sample_frequency: int = 10, | ||
| 136 | sample_steps: int = 20, | ||
| 137 | checkpoint_frequency: int = 50, | ||
| 138 | global_step_offset: int = 0, | ||
| 139 | ): | ||
| 140 | if use_ema: | ||
| 141 | ema_embeddings = EMAModel( | ||
| 142 | setup.text_encoder.text_model.embeddings.temp_token_embedding.parameters(), | ||
| 143 | inv_gamma=ema_inv_gamma, | ||
| 144 | power=ema_power, | ||
| 145 | max_value=ema_max_decay, | ||
| 146 | ) | ||
| 147 | else: | ||
| 148 | ema_embeddings = None | ||
| 149 | |||
| 150 | setup.text_encoder.requires_grad_(True) | ||
| 151 | setup.text_encoder.text_model.encoder.requires_grad_(False) | ||
| 152 | setup.text_encoder.text_model.final_layer_norm.requires_grad_(False) | ||
| 153 | setup.text_encoder.text_model.embeddings.position_embedding.requires_grad_(False) | ||
| 154 | setup.text_encoder.text_model.embeddings.token_embedding.requires_grad_(False) | ||
| 155 | |||
| 156 | # Initialize the optimizer | ||
| 157 | optimizer = setup.optimizer_class( | ||
| 158 | setup.text_encoder.text_model.embeddings.temp_token_embedding.parameters(), | ||
| 159 | lr=setup.learning_rate, | ||
| 160 | betas=(adam_beta1, adam_beta2), | ||
| 161 | weight_decay=adam_weight_decay, | ||
| 162 | eps=adam_epsilon, | ||
| 163 | amsgrad=adam_amsgrad, | ||
| 164 | ) | ||
| 165 | |||
| 166 | lr_scheduler = get_scheduler( | ||
| 167 | lr_scheduler, | ||
| 168 | optimizer=optimizer, | ||
| 169 | min_lr=lr_min_lr, | ||
| 170 | warmup_func=lr_warmup_func, | ||
| 171 | annealing_func=lr_annealing_func, | ||
| 172 | warmup_exp=lr_warmup_exp, | ||
| 173 | annealing_exp=lr_annealing_exp, | ||
| 174 | cycles=lr_cycles, | ||
| 175 | train_epochs=num_train_epochs, | ||
| 176 | warmup_epochs=lr_warmup_epochs, | ||
| 177 | num_training_steps_per_epoch=len(setup.train_dataloader), | ||
| 178 | gradient_accumulation_steps=setup.accelerator.gradient_accumulation_steps | ||
| 179 | ) | ||
| 180 | |||
| 181 | text_encoder, optimizer, lr_scheduler = setup.accelerator.prepare( | ||
| 182 | setup.text_encoder, optimizer, lr_scheduler | ||
| 183 | ) | ||
| 184 | |||
| 185 | # Move vae and unet to device | ||
| 186 | setup.vae.to(setup.accelerator.device, dtype=setup.weight_dtype) | ||
| 187 | setup.unet.to(setup.accelerator.device, dtype=setup.weight_dtype) | ||
| 188 | |||
| 189 | if use_ema: | ||
| 190 | ema_embeddings.to(setup.accelerator.device) | ||
| 191 | |||
| 192 | setup.unet.train() | ||
| 193 | |||
| 194 | @contextmanager | ||
| 195 | def on_train(epoch: int): | ||
| 196 | try: | ||
| 197 | setup.tokenizer.train() | ||
| 198 | yield | ||
| 199 | finally: | ||
| 200 | pass | ||
| 201 | |||
| 202 | @contextmanager | ||
| 203 | def on_eval(): | ||
| 204 | try: | ||
| 205 | setup.tokenizer.eval() | ||
| 206 | |||
| 207 | ema_context = nullcontext() | ||
| 208 | if use_ema: | ||
| 209 | ema_context = ema_embeddings.apply_temporary( | ||
| 210 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
| 211 | |||
| 212 | with ema_context: | ||
| 213 | yield | ||
| 214 | finally: | ||
| 215 | pass | ||
| 216 | |||
| 217 | @torch.no_grad() | ||
| 218 | def on_after_optimize(lr: float): | ||
| 219 | text_encoder.text_model.embeddings.normalize( | ||
| 220 | emb_decay_target, | ||
| 221 | min(1.0, max(0.0, emb_decay_factor * ((lr - emb_decay_start) / (setup.learning_rate - emb_decay_start)))) | ||
| 222 | ) | ||
| 223 | |||
| 224 | if use_ema: | ||
| 225 | ema_embeddings.step(text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
| 226 | |||
| 227 | def on_log(): | ||
| 228 | if use_ema: | ||
| 229 | return {"ema_decay": ema_embeddings.decay} | ||
| 230 | return {} | ||
| 231 | |||
| 232 | loss_step_ = partial( | ||
| 233 | loss_step, | ||
| 234 | setup.vae, | ||
| 235 | setup.noise_scheduler, | ||
| 236 | setup.unet, | ||
| 237 | text_encoder, | ||
| 238 | num_class_images != 0, | ||
| 239 | prior_loss_weight, | ||
| 240 | setup.seed, | ||
| 241 | ) | ||
| 242 | |||
| 243 | checkpointer = Checkpointer( | ||
| 244 | accelerator=setup.accelerator, | ||
| 245 | vae=setup.vae, | ||
| 246 | unet=setup.unet, | ||
| 247 | tokenizer=setup.tokenizer, | ||
| 248 | text_encoder=text_encoder, | ||
| 249 | ema_embeddings=ema_embeddings, | ||
| 250 | weight_dtype=setup.weight_dtype, | ||
| 251 | scheduler=setup.checkpoint_scheduler, | ||
| 252 | placeholder_token=setup.placeholder_token, | ||
| 253 | placeholder_token_ids=setup.placeholder_token_ids, | ||
| 254 | train_dataloader=setup.train_dataloader, | ||
| 255 | val_dataloader=setup.val_dataloader, | ||
| 256 | output_dir=setup.output_dir, | ||
| 257 | seed=setup.seed, | ||
| 258 | sample_image_size=sample_image_size, | ||
| 259 | sample_batch_size=sample_batch_size, | ||
| 260 | sample_batches=sample_batches | ||
| 261 | ) | ||
| 262 | |||
| 263 | if setup.accelerator.is_main_process: | ||
| 264 | setup.accelerator.init_trackers("textual_inversion") | ||
| 265 | |||
| 266 | train_loop( | ||
| 267 | accelerator=setup.accelerator, | ||
| 268 | optimizer=optimizer, | ||
| 269 | lr_scheduler=lr_scheduler, | ||
| 270 | model=text_encoder, | ||
| 271 | checkpointer=checkpointer, | ||
| 272 | train_dataloader=setup.train_dataloader, | ||
| 273 | val_dataloader=setup.val_dataloader, | ||
| 274 | loss_step=loss_step_, | ||
| 275 | sample_frequency=sample_frequency, | ||
| 276 | sample_steps=sample_steps, | ||
| 277 | checkpoint_frequency=checkpoint_frequency, | ||
| 278 | global_step_offset=global_step_offset, | ||
| 279 | num_epochs=num_train_epochs, | ||
| 280 | on_log=on_log, | ||
| 281 | on_train=on_train, | ||
| 282 | on_after_optimize=on_after_optimize, | ||
| 283 | on_eval=on_eval | ||
| 284 | ) | ||
diff --git a/training/optimization.py b/training/optimization.py index dd84f9c..5db7794 100644 --- a/training/optimization.py +++ b/training/optimization.py | |||
| @@ -5,6 +5,8 @@ from functools import partial | |||
| 5 | import torch | 5 | import torch |
| 6 | from torch.optim.lr_scheduler import LambdaLR | 6 | from torch.optim.lr_scheduler import LambdaLR |
| 7 | 7 | ||
| 8 | from diffusers.optimization import get_scheduler as get_scheduler_, get_cosine_with_hard_restarts_schedule_with_warmup | ||
| 9 | |||
| 8 | 10 | ||
| 9 | class OneCyclePhase(NamedTuple): | 11 | class OneCyclePhase(NamedTuple): |
| 10 | step_min: int | 12 | step_min: int |
| @@ -83,3 +85,54 @@ def get_one_cycle_schedule( | |||
| 83 | return phase.min + phase.func((current_step - phase.step_min) / (phase.step_max - phase.step_min)) * (phase.max - phase.min) | 85 | return phase.min + phase.func((current_step - phase.step_min) / (phase.step_max - phase.step_min)) * (phase.max - phase.min) |
| 84 | 86 | ||
| 85 | return LambdaLR(optimizer, lr_lambda, last_epoch) | 87 | return LambdaLR(optimizer, lr_lambda, last_epoch) |
| 88 | |||
| 89 | |||
| 90 | def get_scheduler( | ||
| 91 | id: str, | ||
| 92 | optimizer: torch.optim.Optimizer, | ||
| 93 | num_training_steps_per_epoch: int, | ||
| 94 | gradient_accumulation_steps: int, | ||
| 95 | min_lr: float = 0.04, | ||
| 96 | warmup_func: str = "cos", | ||
| 97 | annealing_func: str = "cos", | ||
| 98 | warmup_exp: int = 1, | ||
| 99 | annealing_exp: int = 1, | ||
| 100 | cycles: int = 1, | ||
| 101 | train_epochs: int = 100, | ||
| 102 | warmup_epochs: int = 10, | ||
| 103 | ): | ||
| 104 | num_training_steps_per_epoch = math.ceil( | ||
| 105 | num_training_steps_per_epoch / gradient_accumulation_steps | ||
| 106 | ) * gradient_accumulation_steps | ||
| 107 | num_training_steps = train_epochs * num_training_steps_per_epoch | ||
| 108 | num_warmup_steps = warmup_epochs * num_training_steps_per_epoch | ||
| 109 | |||
| 110 | if id == "one_cycle": | ||
| 111 | lr_scheduler = get_one_cycle_schedule( | ||
| 112 | optimizer=optimizer, | ||
| 113 | num_training_steps=num_training_steps, | ||
| 114 | warmup=warmup_func, | ||
| 115 | annealing=annealing_func, | ||
| 116 | warmup_exp=warmup_exp, | ||
| 117 | annealing_exp=annealing_exp, | ||
| 118 | min_lr=min_lr, | ||
| 119 | ) | ||
| 120 | elif id == "cosine_with_restarts": | ||
| 121 | if cycles is None: | ||
| 122 | cycles = math.ceil(math.sqrt(((num_training_steps - num_warmup_steps) / num_training_steps_per_epoch))) | ||
| 123 | |||
| 124 | lr_scheduler = get_cosine_with_hard_restarts_schedule_with_warmup( | ||
| 125 | optimizer=optimizer, | ||
| 126 | num_warmup_steps=num_warmup_steps, | ||
| 127 | num_training_steps=num_training_steps, | ||
| 128 | num_cycles=cycles, | ||
| 129 | ) | ||
| 130 | else: | ||
| 131 | lr_scheduler = get_scheduler_( | ||
| 132 | id, | ||
| 133 | optimizer=optimizer, | ||
| 134 | num_warmup_steps=num_warmup_steps, | ||
| 135 | num_training_steps=num_training_steps, | ||
| 136 | ) | ||
| 137 | |||
| 138 | return lr_scheduler | ||
