diff options
| -rw-r--r-- | .gitignore | 2 | ||||
| -rw-r--r-- | dreambooth.py | 12 | ||||
| -rw-r--r-- | infer.py | 111 | ||||
| -rw-r--r-- | pipelines/stable_diffusion/clip_guided_stable_diffusion.py | 457 | ||||
| -rw-r--r-- | schedulers/scheduling_euler_a.py | 323 | 
5 files changed, 869 insertions, 36 deletions
| @@ -160,5 +160,5 @@ cython_debug/ | |||
| 160 | #.idea/ | 160 | #.idea/ | 
| 161 | 161 | ||
| 162 | output/ | 162 | output/ | 
| 163 | conf*.json | 163 | conf/ | 
| 164 | v1-inference.yaml* | 164 | v1-inference.yaml* | 
| diff --git a/dreambooth.py b/dreambooth.py index 39c4851..4d7366c 100644 --- a/dreambooth.py +++ b/dreambooth.py | |||
| @@ -59,7 +59,7 @@ def parse_args(): | |||
| 59 | parser.add_argument( | 59 | parser.add_argument( | 
| 60 | "--repeats", | 60 | "--repeats", | 
| 61 | type=int, | 61 | type=int, | 
| 62 | default=100, | 62 | default=1, | 
| 63 | help="How many times to repeat the training data." | 63 | help="How many times to repeat the training data." | 
| 64 | ) | 64 | ) | 
| 65 | parser.add_argument( | 65 | parser.add_argument( | 
| @@ -375,7 +375,6 @@ class Checkpointer: | |||
| 375 | @torch.no_grad() | 375 | @torch.no_grad() | 
| 376 | def save_samples(self, step, height, width, guidance_scale, eta, num_inference_steps): | 376 | def save_samples(self, step, height, width, guidance_scale, eta, num_inference_steps): | 
| 377 | samples_path = Path(self.output_dir).joinpath("samples") | 377 | samples_path = Path(self.output_dir).joinpath("samples") | 
| 378 | samples_path.mkdir(parents=True, exist_ok=True) | ||
| 379 | 378 | ||
| 380 | unwrapped = self.accelerator.unwrap_model(self.unet) | 379 | unwrapped = self.accelerator.unwrap_model(self.unet) | 
| 381 | pipeline = StableDiffusionPipeline( | 380 | pipeline = StableDiffusionPipeline( | 
| @@ -403,6 +402,7 @@ class Checkpointer: | |||
| 403 | 402 | ||
| 404 | all_samples = [] | 403 | all_samples = [] | 
| 405 | file_path = samples_path.joinpath("stable", f"step_{step}.png") | 404 | file_path = samples_path.joinpath("stable", f"step_{step}.png") | 
| 405 | file_path.parent.mkdir(parents=True, exist_ok=True) | ||
| 406 | 406 | ||
| 407 | data_enum = enumerate(val_data) | 407 | data_enum = enumerate(val_data) | 
| 408 | 408 | ||
| @@ -436,6 +436,7 @@ class Checkpointer: | |||
| 436 | for data, pool in [(val_data, "val"), (train_data, "train")]: | 436 | for data, pool in [(val_data, "val"), (train_data, "train")]: | 
| 437 | all_samples = [] | 437 | all_samples = [] | 
| 438 | file_path = samples_path.joinpath(pool, f"step_{step}.png") | 438 | file_path = samples_path.joinpath(pool, f"step_{step}.png") | 
| 439 | file_path.parent.mkdir(parents=True, exist_ok=True) | ||
| 439 | 440 | ||
| 440 | data_enum = enumerate(data) | 441 | data_enum = enumerate(data) | 
| 441 | 442 | ||
| @@ -496,11 +497,15 @@ def main(): | |||
| 496 | cur_class_images = len(list(class_images_dir.iterdir())) | 497 | cur_class_images = len(list(class_images_dir.iterdir())) | 
| 497 | 498 | ||
| 498 | if cur_class_images < args.num_class_images: | 499 | if cur_class_images < args.num_class_images: | 
| 499 | torch_dtype = torch.bfloat16 if accelerator.device.type == "cuda" else torch.float32 | 500 | torch_dtype = torch.float32 | 
| 501 | if accelerator.device.type == "cuda": | ||
| 502 | torch_dtype = {"no": torch.float32, "fp16": torch.float16, "bf16": torch.bfloat16}[args.mixed_precision] | ||
| 503 | |||
| 500 | pipeline = StableDiffusionPipeline.from_pretrained( | 504 | pipeline = StableDiffusionPipeline.from_pretrained( | 
| 501 | args.pretrained_model_name_or_path, torch_dtype=torch_dtype) | 505 | args.pretrained_model_name_or_path, torch_dtype=torch_dtype) | 
| 502 | pipeline.enable_attention_slicing() | 506 | pipeline.enable_attention_slicing() | 
| 503 | pipeline.set_progress_bar_config(disable=True) | 507 | pipeline.set_progress_bar_config(disable=True) | 
| 508 | pipeline.to(accelerator.device) | ||
| 504 | 509 | ||
| 505 | num_new_images = args.num_class_images - cur_class_images | 510 | num_new_images = args.num_class_images - cur_class_images | 
| 506 | logger.info(f"Number of class images to sample: {num_new_images}.") | 511 | logger.info(f"Number of class images to sample: {num_new_images}.") | 
| @@ -509,7 +514,6 @@ def main(): | |||
| 509 | sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size) | 514 | sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size) | 
| 510 | 515 | ||
| 511 | sample_dataloader = accelerator.prepare(sample_dataloader) | 516 | sample_dataloader = accelerator.prepare(sample_dataloader) | 
| 512 | pipeline.to(accelerator.device) | ||
| 513 | 517 | ||
| 514 | for example in tqdm( | 518 | for example in tqdm( | 
| 515 | sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process | 519 | sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process | 
| @@ -1,18 +1,15 @@ | |||
| 1 | import argparse | 1 | import argparse | 
| 2 | import datetime | 2 | import datetime | 
| 3 | import logging | ||
| 3 | from pathlib import Path | 4 | from pathlib import Path | 
| 4 | from torch import autocast | 5 | from torch import autocast | 
| 5 | from diffusers import StableDiffusionPipeline | ||
| 6 | import torch | 6 | import torch | 
| 7 | import json | 7 | import json | 
| 8 | from diffusers import AutoencoderKL, StableDiffusionPipeline, UNet2DConditionModel, PNDMScheduler | 8 | from diffusers import StableDiffusionPipeline, AutoencoderKL, UNet2DConditionModel, PNDMScheduler, DDIMScheduler, LMSDiscreteScheduler | 
| 9 | from transformers import CLIPTextModel, CLIPTokenizer, CLIPFeatureExtractor | 9 | from transformers import CLIPModel, CLIPTextModel, CLIPTokenizer, CLIPFeatureExtractor | 
| 10 | from slugify import slugify | 10 | from slugify import slugify | 
| 11 | from pipelines.stable_diffusion.no_check import NoCheck | 11 | from pipelines.stable_diffusion.clip_guided_stable_diffusion import CLIPGuidedStableDiffusion | 
| 12 | 12 | from schedulers.scheduling_euler_a import EulerAScheduler | |
| 13 | model_id = "path-to-your-trained-model" | ||
| 14 | |||
| 15 | prompt = "A photo of sks dog in a bucket" | ||
| 16 | 13 | ||
| 17 | 14 | ||
| 18 | def parse_args(): | 15 | def parse_args(): | 
| @@ -30,6 +27,21 @@ def parse_args(): | |||
| 30 | default=None, | 27 | default=None, | 
| 31 | ) | 28 | ) | 
| 32 | parser.add_argument( | 29 | parser.add_argument( | 
| 30 | "--negative_prompt", | ||
| 31 | type=str, | ||
| 32 | default=None, | ||
| 33 | ) | ||
| 34 | parser.add_argument( | ||
| 35 | "--width", | ||
| 36 | type=int, | ||
| 37 | default=512, | ||
| 38 | ) | ||
| 39 | parser.add_argument( | ||
| 40 | "--height", | ||
| 41 | type=int, | ||
| 42 | default=512, | ||
| 43 | ) | ||
| 44 | parser.add_argument( | ||
| 33 | "--batch_size", | 45 | "--batch_size", | 
| 34 | type=int, | 46 | type=int, | 
| 35 | default=1, | 47 | default=1, | 
| @@ -42,17 +54,28 @@ def parse_args(): | |||
| 42 | parser.add_argument( | 54 | parser.add_argument( | 
| 43 | "--steps", | 55 | "--steps", | 
| 44 | type=int, | 56 | type=int, | 
| 45 | default=80, | 57 | default=120, | 
| 58 | ) | ||
| 59 | parser.add_argument( | ||
| 60 | "--scheduler", | ||
| 61 | type=str, | ||
| 62 | choices=["plms", "ddim", "klms", "euler_a"], | ||
| 63 | default="euler_a", | ||
| 46 | ) | 64 | ) | 
| 47 | parser.add_argument( | 65 | parser.add_argument( | 
| 48 | "--scale", | 66 | "--guidance_scale", | 
| 49 | type=int, | 67 | type=int, | 
| 50 | default=7.5, | 68 | default=7.5, | 
| 51 | ) | 69 | ) | 
| 52 | parser.add_argument( | 70 | parser.add_argument( | 
| 71 | "--clip_guidance_scale", | ||
| 72 | type=int, | ||
| 73 | default=100, | ||
| 74 | ) | ||
| 75 | parser.add_argument( | ||
| 53 | "--seed", | 76 | "--seed", | 
| 54 | type=int, | 77 | type=int, | 
| 55 | default=None, | 78 | default=torch.random.seed(), | 
| 56 | ) | 79 | ) | 
| 57 | parser.add_argument( | 80 | parser.add_argument( | 
| 58 | "--output_dir", | 81 | "--output_dir", | 
| @@ -81,31 +104,39 @@ def save_args(basepath, args, extra={}): | |||
| 81 | json.dump(info, f, indent=4) | 104 | json.dump(info, f, indent=4) | 
| 82 | 105 | ||
| 83 | 106 | ||
| 84 | def main(): | 107 | def gen(args, output_dir): | 
| 85 | args = parse_args() | ||
| 86 | |||
| 87 | seed = args.seed or torch.random.seed() | ||
| 88 | |||
| 89 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | ||
| 90 | output_dir = Path(args.output_dir).joinpath(f"{now}_{slugify(args.prompt)[:100]}") | ||
| 91 | output_dir.mkdir(parents=True, exist_ok=True) | ||
| 92 | save_args(output_dir, args) | ||
| 93 | |||
| 94 | tokenizer = CLIPTokenizer.from_pretrained(args.model + '/tokenizer', torch_dtype=torch.bfloat16) | 108 | tokenizer = CLIPTokenizer.from_pretrained(args.model + '/tokenizer', torch_dtype=torch.bfloat16) | 
| 95 | text_encoder = CLIPTextModel.from_pretrained(args.model + '/text_encoder', torch_dtype=torch.bfloat16) | 109 | text_encoder = CLIPTextModel.from_pretrained(args.model + '/text_encoder', torch_dtype=torch.bfloat16) | 
| 110 | clip_model = CLIPModel.from_pretrained("laion/CLIP-ViT-B-32-laion2B-s34B-b79K", torch_dtype=torch.bfloat16) | ||
| 96 | vae = AutoencoderKL.from_pretrained(args.model + '/vae', torch_dtype=torch.bfloat16) | 111 | vae = AutoencoderKL.from_pretrained(args.model + '/vae', torch_dtype=torch.bfloat16) | 
| 97 | unet = UNet2DConditionModel.from_pretrained(args.model + '/unet', torch_dtype=torch.bfloat16) | 112 | unet = UNet2DConditionModel.from_pretrained(args.model + '/unet', torch_dtype=torch.bfloat16) | 
| 98 | feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32", torch_dtype=torch.bfloat16) | 113 | feature_extractor = CLIPFeatureExtractor.from_pretrained( | 
| 114 | "laion/CLIP-ViT-B-32-laion2B-s34B-b79K", torch_dtype=torch.bfloat16) | ||
| 99 | 115 | ||
| 100 | pipeline = StableDiffusionPipeline( | 116 | if args.scheduler == "plms": | 
| 117 | scheduler = PNDMScheduler( | ||
| 118 | beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=True | ||
| 119 | ) | ||
| 120 | elif args.scheduler == "klms": | ||
| 121 | scheduler = LMSDiscreteScheduler( | ||
| 122 | beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" | ||
| 123 | ) | ||
| 124 | elif args.scheduler == "ddim": | ||
| 125 | scheduler = DDIMScheduler( | ||
| 126 | beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False | ||
| 127 | ) | ||
| 128 | else: | ||
| 129 | scheduler = EulerAScheduler( | ||
| 130 | beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False | ||
| 131 | ) | ||
| 132 | |||
| 133 | pipeline = CLIPGuidedStableDiffusion( | ||
| 101 | text_encoder=text_encoder, | 134 | text_encoder=text_encoder, | 
| 102 | vae=vae, | 135 | vae=vae, | 
| 103 | unet=unet, | 136 | unet=unet, | 
| 104 | tokenizer=tokenizer, | 137 | tokenizer=tokenizer, | 
| 105 | scheduler=PNDMScheduler( | 138 | clip_model=clip_model, | 
| 106 | beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=True | 139 | scheduler=scheduler, | 
| 107 | ), | ||
| 108 | safety_checker=NoCheck(), | ||
| 109 | feature_extractor=feature_extractor | 140 | feature_extractor=feature_extractor | 
| 110 | ) | 141 | ) | 
| 111 | pipeline.enable_attention_slicing() | 142 | pipeline.enable_attention_slicing() | 
| @@ -113,16 +144,34 @@ def main(): | |||
| 113 | 144 | ||
| 114 | with autocast("cuda"): | 145 | with autocast("cuda"): | 
| 115 | for i in range(args.batch_num): | 146 | for i in range(args.batch_num): | 
| 116 | generator = torch.Generator(device="cuda").manual_seed(seed + i) | 147 | generator = torch.Generator(device="cuda").manual_seed(args.seed + i) | 
| 117 | images = pipeline( | 148 | images = pipeline( | 
| 118 | [args.prompt] * args.batch_size, | 149 | prompt=[args.prompt] * args.batch_size, | 
| 150 | height=args.height, | ||
| 151 | width=args.width, | ||
| 152 | negative_prompt=args.negative_prompt, | ||
| 119 | num_inference_steps=args.steps, | 153 | num_inference_steps=args.steps, | 
| 120 | guidance_scale=args.scale, | 154 | guidance_scale=args.guidance_scale, | 
| 155 | clip_guidance_scale=args.clip_guidance_scale, | ||
| 121 | generator=generator, | 156 | generator=generator, | 
| 122 | ).images | 157 | ).images | 
| 123 | 158 | ||
| 124 | for j, image in enumerate(images): | 159 | for j, image in enumerate(images): | 
| 125 | image.save(output_dir.joinpath(f"{seed + i}_{j}.jpg")) | 160 | image.save(output_dir.joinpath(f"{args.seed + i}_{j}.jpg")) | 
| 161 | |||
| 162 | |||
| 163 | def main(): | ||
| 164 | args = parse_args() | ||
| 165 | |||
| 166 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | ||
| 167 | output_dir = Path(args.output_dir).joinpath(f"{now}_{slugify(args.prompt)[:100]}") | ||
| 168 | output_dir.mkdir(parents=True, exist_ok=True) | ||
| 169 | |||
| 170 | save_args(output_dir, args) | ||
| 171 | |||
| 172 | logging.basicConfig(filename=output_dir.joinpath("log.txt"), level=logging.DEBUG) | ||
| 173 | |||
| 174 | gen(args, output_dir) | ||
| 126 | 175 | ||
| 127 | 176 | ||
| 128 | if __name__ == "__main__": | 177 | if __name__ == "__main__": | 
| diff --git a/pipelines/stable_diffusion/clip_guided_stable_diffusion.py b/pipelines/stable_diffusion/clip_guided_stable_diffusion.py new file mode 100644 index 0000000..306d9a9 --- /dev/null +++ b/pipelines/stable_diffusion/clip_guided_stable_diffusion.py | |||
| @@ -0,0 +1,457 @@ | |||
| 1 | import inspect | ||
| 2 | import warnings | ||
| 3 | from typing import List, Optional, Union | ||
| 4 | |||
| 5 | import torch | ||
| 6 | from torch import nn | ||
| 7 | from torch.nn import functional as F | ||
| 8 | |||
| 9 | from diffusers.configuration_utils import FrozenDict | ||
| 10 | from diffusers import AutoencoderKL, DiffusionPipeline, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel | ||
| 11 | from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput | ||
| 12 | from diffusers.utils import logging | ||
| 13 | from torchvision import transforms | ||
| 14 | from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer | ||
| 15 | from schedulers.scheduling_euler_a import EulerAScheduler, CFGDenoiserForward | ||
| 16 | |||
| 17 | logger = logging.get_logger(__name__) # pylint: disable=invalid-name | ||
| 18 | |||
| 19 | |||
| 20 | class MakeCutouts(nn.Module): | ||
| 21 | def __init__(self, cut_size, cut_power=1.0): | ||
| 22 | super().__init__() | ||
| 23 | |||
| 24 | self.cut_size = cut_size | ||
| 25 | self.cut_power = cut_power | ||
| 26 | |||
| 27 | def forward(self, pixel_values, num_cutouts): | ||
| 28 | sideY, sideX = pixel_values.shape[2:4] | ||
| 29 | max_size = min(sideX, sideY) | ||
| 30 | min_size = min(sideX, sideY, self.cut_size) | ||
| 31 | cutouts = [] | ||
| 32 | for _ in range(num_cutouts): | ||
| 33 | size = int(torch.rand([]) ** self.cut_power * (max_size - min_size) + min_size) | ||
| 34 | offsetx = torch.randint(0, sideX - size + 1, ()) | ||
| 35 | offsety = torch.randint(0, sideY - size + 1, ()) | ||
| 36 | cutout = pixel_values[:, :, offsety: offsety + size, offsetx: offsetx + size] | ||
| 37 | cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size)) | ||
| 38 | return torch.cat(cutouts) | ||
| 39 | |||
| 40 | |||
| 41 | def spherical_dist_loss(x, y): | ||
| 42 | x = F.normalize(x, dim=-1) | ||
| 43 | y = F.normalize(y, dim=-1) | ||
| 44 | return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) | ||
| 45 | |||
| 46 | |||
| 47 | def set_requires_grad(model, value): | ||
| 48 | for param in model.parameters(): | ||
| 49 | param.requires_grad = value | ||
| 50 | |||
| 51 | |||
| 52 | class CLIPGuidedStableDiffusion(DiffusionPipeline): | ||
| 53 | """CLIP guided stable diffusion based on the amazing repo by @crowsonkb and @Jack000 | ||
| 54 | - https://github.com/Jack000/glid-3-xl | ||
| 55 | - https://github.dev/crowsonkb/k-diffusion | ||
| 56 | """ | ||
| 57 | |||
| 58 | def __init__( | ||
| 59 | self, | ||
| 60 | vae: AutoencoderKL, | ||
| 61 | text_encoder: CLIPTextModel, | ||
| 62 | clip_model: CLIPModel, | ||
| 63 | tokenizer: CLIPTokenizer, | ||
| 64 | unet: UNet2DConditionModel, | ||
| 65 | scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], | ||
| 66 | feature_extractor: CLIPFeatureExtractor, | ||
| 67 | **kwargs, | ||
| 68 | ): | ||
| 69 | super().__init__() | ||
| 70 | |||
| 71 | if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: | ||
| 72 | warnings.warn( | ||
| 73 | f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" | ||
| 74 | f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " | ||
| 75 | "to update the config accordingly as leaving `steps_offset` might led to incorrect results" | ||
| 76 | " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," | ||
| 77 | " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" | ||
| 78 | " file", | ||
| 79 | DeprecationWarning, | ||
| 80 | ) | ||
| 81 | new_config = dict(scheduler.config) | ||
| 82 | new_config["steps_offset"] = 1 | ||
| 83 | scheduler._internal_dict = FrozenDict(new_config) | ||
| 84 | |||
| 85 | self.register_modules( | ||
| 86 | vae=vae, | ||
| 87 | text_encoder=text_encoder, | ||
| 88 | clip_model=clip_model, | ||
| 89 | tokenizer=tokenizer, | ||
| 90 | unet=unet, | ||
| 91 | scheduler=scheduler, | ||
| 92 | feature_extractor=feature_extractor, | ||
| 93 | ) | ||
| 94 | |||
| 95 | self.normalize = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std) | ||
| 96 | self.make_cutouts = MakeCutouts(feature_extractor.size) | ||
| 97 | |||
| 98 | set_requires_grad(self.text_encoder, False) | ||
| 99 | set_requires_grad(self.clip_model, False) | ||
| 100 | |||
| 101 | def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): | ||
| 102 | r""" | ||
| 103 | Enable sliced attention computation. | ||
| 104 | |||
| 105 | When this option is enabled, the attention module will split the input tensor in slices, to compute attention | ||
| 106 | in several steps. This is useful to save some memory in exchange for a small speed decrease. | ||
| 107 | |||
| 108 | Args: | ||
| 109 | slice_size (`str` or `int`, *optional*, defaults to `"auto"`): | ||
| 110 | When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If | ||
| 111 | a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, | ||
| 112 | `attention_head_dim` must be a multiple of `slice_size`. | ||
| 113 | """ | ||
| 114 | if slice_size == "auto": | ||
| 115 | # half the attention head size is usually a good trade-off between | ||
| 116 | # speed and memory | ||
| 117 | slice_size = self.unet.config.attention_head_dim // 2 | ||
| 118 | self.unet.set_attention_slice(slice_size) | ||
| 119 | |||
| 120 | def disable_attention_slicing(self): | ||
| 121 | r""" | ||
| 122 | Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go | ||
| 123 | back to computing attention in one step. | ||
| 124 | """ | ||
| 125 | # set slice_size = `None` to disable `attention slicing` | ||
| 126 | self.enable_attention_slicing(None) | ||
| 127 | |||
| 128 | def freeze_vae(self): | ||
| 129 | set_requires_grad(self.vae, False) | ||
| 130 | |||
| 131 | def unfreeze_vae(self): | ||
| 132 | set_requires_grad(self.vae, True) | ||
| 133 | |||
| 134 | def freeze_unet(self): | ||
| 135 | set_requires_grad(self.unet, False) | ||
| 136 | |||
| 137 | def unfreeze_unet(self): | ||
| 138 | set_requires_grad(self.unet, True) | ||
| 139 | |||
| 140 | @torch.enable_grad() | ||
| 141 | def cond_fn( | ||
| 142 | self, | ||
| 143 | latents, | ||
| 144 | timestep, | ||
| 145 | index, | ||
| 146 | text_embeddings, | ||
| 147 | noise_pred_original, | ||
| 148 | text_embeddings_clip, | ||
| 149 | clip_guidance_scale, | ||
| 150 | num_cutouts, | ||
| 151 | use_cutouts=True, | ||
| 152 | ): | ||
| 153 | latents = latents.detach().requires_grad_() | ||
| 154 | |||
| 155 | if isinstance(self.scheduler, LMSDiscreteScheduler): | ||
| 156 | sigma = self.scheduler.sigmas[index] | ||
| 157 | # the model input needs to be scaled to match the continuous ODE formulation in K-LMS | ||
| 158 | latent_model_input = latents / ((sigma**2 + 1) ** 0.5) | ||
| 159 | else: | ||
| 160 | latent_model_input = latents | ||
| 161 | |||
| 162 | # predict the noise residual | ||
| 163 | noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample | ||
| 164 | |||
| 165 | if isinstance(self.scheduler, PNDMScheduler): | ||
| 166 | alpha_prod_t = self.scheduler.alphas_cumprod[timestep] | ||
| 167 | beta_prod_t = 1 - alpha_prod_t | ||
| 168 | # compute predicted original sample from predicted noise also called | ||
| 169 | # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | ||
| 170 | pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5) | ||
| 171 | |||
| 172 | fac = torch.sqrt(beta_prod_t) | ||
| 173 | sample = pred_original_sample * (fac) + latents * (1 - fac) | ||
| 174 | elif isinstance(self.scheduler, LMSDiscreteScheduler): | ||
| 175 | sigma = self.scheduler.sigmas[index] | ||
| 176 | sample = latents - sigma * noise_pred | ||
| 177 | else: | ||
| 178 | raise ValueError(f"scheduler type {type(self.scheduler)} not supported") | ||
| 179 | |||
| 180 | sample = 1 / 0.18215 * sample | ||
| 181 | image = self.vae.decode(sample).sample | ||
| 182 | image = (image / 2 + 0.5).clamp(0, 1) | ||
| 183 | |||
| 184 | if use_cutouts: | ||
| 185 | image = self.make_cutouts(image, num_cutouts) | ||
| 186 | else: | ||
| 187 | image = transforms.Resize(self.feature_extractor.size)(image) | ||
| 188 | image = self.normalize(image) | ||
| 189 | |||
| 190 | image_embeddings_clip = self.clip_model.get_image_features(image).float() | ||
| 191 | image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True) | ||
| 192 | |||
| 193 | if use_cutouts: | ||
| 194 | dists = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip) | ||
| 195 | dists = dists.view([num_cutouts, sample.shape[0], -1]) | ||
| 196 | loss = dists.sum(2).mean(0).sum() * clip_guidance_scale | ||
| 197 | else: | ||
| 198 | loss = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip).mean() * clip_guidance_scale | ||
| 199 | |||
| 200 | grads = -torch.autograd.grad(loss, latents)[0] | ||
| 201 | |||
| 202 | if isinstance(self.scheduler, LMSDiscreteScheduler): | ||
| 203 | latents = latents.detach() + grads * (sigma**2) | ||
| 204 | noise_pred = noise_pred_original | ||
| 205 | else: | ||
| 206 | noise_pred = noise_pred_original - torch.sqrt(beta_prod_t) * grads | ||
| 207 | return noise_pred, latents | ||
| 208 | |||
| 209 | @torch.no_grad() | ||
| 210 | def __call__( | ||
| 211 | self, | ||
| 212 | prompt: Union[str, List[str]], | ||
| 213 | negative_prompt: Optional[Union[str, List[str]]] = None, | ||
| 214 | height: Optional[int] = 512, | ||
| 215 | width: Optional[int] = 512, | ||
| 216 | num_inference_steps: Optional[int] = 50, | ||
| 217 | guidance_scale: Optional[float] = 7.5, | ||
| 218 | eta: Optional[float] = 0.0, | ||
| 219 | clip_guidance_scale: Optional[float] = 100, | ||
| 220 | clip_prompt: Optional[Union[str, List[str]]] = None, | ||
| 221 | num_cutouts: Optional[int] = 4, | ||
| 222 | use_cutouts: Optional[bool] = True, | ||
| 223 | generator: Optional[torch.Generator] = None, | ||
| 224 | latents: Optional[torch.FloatTensor] = None, | ||
| 225 | output_type: Optional[str] = "pil", | ||
| 226 | return_dict: bool = True, | ||
| 227 | ): | ||
| 228 | r""" | ||
| 229 | Function invoked when calling the pipeline for generation. | ||
| 230 | |||
| 231 | Args: | ||
| 232 | prompt (`str` or `List[str]`): | ||
| 233 | The prompt or prompts to guide the image generation. | ||
| 234 | height (`int`, *optional*, defaults to 512): | ||
| 235 | The height in pixels of the generated image. | ||
| 236 | width (`int`, *optional*, defaults to 512): | ||
| 237 | The width in pixels of the generated image. | ||
| 238 | num_inference_steps (`int`, *optional*, defaults to 50): | ||
| 239 | The number of denoising steps. More denoising steps usually lead to a higher quality image at the | ||
| 240 | expense of slower inference. | ||
| 241 | guidance_scale (`float`, *optional*, defaults to 7.5): | ||
| 242 | Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | ||
| 243 | `guidance_scale` is defined as `w` of equation 2. of [Imagen | ||
| 244 | Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | ||
| 245 | 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | ||
| 246 | usually at the expense of lower image quality. | ||
| 247 | eta (`float`, *optional*, defaults to 0.0): | ||
| 248 | Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | ||
| 249 | [`schedulers.DDIMScheduler`], will be ignored for others. | ||
| 250 | generator (`torch.Generator`, *optional*): | ||
| 251 | A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation | ||
| 252 | deterministic. | ||
| 253 | latents (`torch.FloatTensor`, *optional*): | ||
| 254 | Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | ||
| 255 | generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | ||
| 256 | tensor will ge generated by sampling using the supplied random `generator`. | ||
| 257 | output_type (`str`, *optional*, defaults to `"pil"`): | ||
| 258 | The output format of the generate image. Choose between | ||
| 259 | [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | ||
| 260 | return_dict (`bool`, *optional*, defaults to `True`): | ||
| 261 | Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | ||
| 262 | plain tuple. | ||
| 263 | |||
| 264 | Returns: | ||
| 265 | [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | ||
| 266 | [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | ||
| 267 | When returning a tuple, the first element is a list with the generated images, and the second element is a | ||
| 268 | list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | ||
| 269 | (nsfw) content, according to the `safety_checker`. | ||
| 270 | """ | ||
| 271 | |||
| 272 | if isinstance(prompt, str): | ||
| 273 | batch_size = 1 | ||
| 274 | elif isinstance(prompt, list): | ||
| 275 | batch_size = len(prompt) | ||
| 276 | else: | ||
| 277 | raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | ||
| 278 | |||
| 279 | if negative_prompt is None: | ||
| 280 | negative_prompt = [""] * batch_size | ||
| 281 | elif isinstance(negative_prompt, str): | ||
| 282 | negative_prompt = [negative_prompt] * batch_size | ||
| 283 | elif isinstance(negative_prompt, list): | ||
| 284 | if len(negative_prompt) != batch_size: | ||
| 285 | raise ValueError( | ||
| 286 | f"`prompt` and `negative_prompt` have to be the same length, but are {len(prompt)} and {len(negative_prompt)}") | ||
| 287 | else: | ||
| 288 | raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}") | ||
| 289 | |||
| 290 | if height % 8 != 0 or width % 8 != 0: | ||
| 291 | raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | ||
| 292 | |||
| 293 | # get prompt text embeddings | ||
| 294 | text_inputs = self.tokenizer( | ||
| 295 | prompt, | ||
| 296 | padding="max_length", | ||
| 297 | max_length=self.tokenizer.model_max_length, | ||
| 298 | return_tensors="pt", | ||
| 299 | ) | ||
| 300 | text_input_ids = text_inputs.input_ids | ||
| 301 | |||
| 302 | if text_input_ids.shape[-1] > self.tokenizer.model_max_length: | ||
| 303 | removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length:]) | ||
| 304 | logger.warning( | ||
| 305 | "The following part of your input was truncated because CLIP can only handle sequences up to" | ||
| 306 | f" {self.tokenizer.model_max_length} tokens: {removed_text}" | ||
| 307 | ) | ||
| 308 | text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] | ||
| 309 | text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0] | ||
| 310 | |||
| 311 | if clip_guidance_scale > 0: | ||
| 312 | if clip_prompt is not None: | ||
| 313 | clip_text_inputs = self.tokenizer( | ||
| 314 | clip_prompt, | ||
| 315 | padding="max_length", | ||
| 316 | max_length=self.tokenizer.model_max_length, | ||
| 317 | truncation=True, | ||
| 318 | return_tensors="pt", | ||
| 319 | ) | ||
| 320 | clip_text_input_ids = clip_text_inputs.input_ids | ||
| 321 | else: | ||
| 322 | clip_text_input_ids = text_input_ids | ||
| 323 | text_embeddings_clip = self.clip_model.get_text_features(clip_text_input_ids.to(self.device)) | ||
| 324 | text_embeddings_clip = text_embeddings_clip / text_embeddings_clip.norm(p=2, dim=-1, keepdim=True) | ||
| 325 | |||
| 326 | # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | ||
| 327 | # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | ||
| 328 | # corresponds to doing no classifier free guidance. | ||
| 329 | do_classifier_free_guidance = guidance_scale > 1.0 | ||
| 330 | # get unconditional embeddings for classifier free guidance | ||
| 331 | if do_classifier_free_guidance: | ||
| 332 | max_length = text_input_ids.shape[-1] | ||
| 333 | uncond_input = self.tokenizer( | ||
| 334 | negative_prompt, padding="max_length", max_length=max_length, return_tensors="pt" | ||
| 335 | ) | ||
| 336 | uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] | ||
| 337 | |||
| 338 | # For classifier free guidance, we need to do two forward passes. | ||
| 339 | # Here we concatenate the unconditional and text embeddings into a single batch | ||
| 340 | # to avoid doing two forward passes | ||
| 341 | text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | ||
| 342 | |||
| 343 | # get the initial random noise unless the user supplied it | ||
| 344 | |||
| 345 | # Unlike in other pipelines, latents need to be generated in the target device | ||
| 346 | # for 1-to-1 results reproducibility with the CompVis implementation. | ||
| 347 | # However this currently doesn't work in `mps`. | ||
| 348 | latents_device = "cpu" if self.device.type == "mps" else self.device | ||
| 349 | latents_shape = (batch_size, self.unet.in_channels, height // 8, width // 8) | ||
| 350 | if latents is None: | ||
| 351 | latents = torch.randn( | ||
| 352 | latents_shape, | ||
| 353 | generator=generator, | ||
| 354 | device=latents_device, | ||
| 355 | dtype=text_embeddings.dtype, | ||
| 356 | ) | ||
| 357 | else: | ||
| 358 | if latents.shape != latents_shape: | ||
| 359 | raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") | ||
| 360 | latents = latents.to(self.device) | ||
| 361 | |||
| 362 | # set timesteps | ||
| 363 | self.scheduler.set_timesteps(num_inference_steps) | ||
| 364 | |||
| 365 | # Some schedulers like PNDM have timesteps as arrays | ||
| 366 | # It's more optimzed to move all timesteps to correct device beforehand | ||
| 367 | if torch.is_tensor(self.scheduler.timesteps): | ||
| 368 | timesteps_tensor = self.scheduler.timesteps.to(self.device) | ||
| 369 | else: | ||
| 370 | timesteps_tensor = torch.tensor(self.scheduler.timesteps.copy(), device=self.device) | ||
| 371 | |||
| 372 | # if we use LMSDiscreteScheduler, let's make sure latents are multiplied by sigmas | ||
| 373 | if isinstance(self.scheduler, LMSDiscreteScheduler): | ||
| 374 | latents = latents * self.scheduler.sigmas[0] | ||
| 375 | elif isinstance(self.scheduler, EulerAScheduler): | ||
| 376 | sigma = self.scheduler.timesteps[0] | ||
| 377 | latents = latents * sigma | ||
| 378 | |||
| 379 | # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | ||
| 380 | # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | ||
| 381 | # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | ||
| 382 | # and should be between [0, 1] | ||
| 383 | scheduler_step_args = set(inspect.signature(self.scheduler.step).parameters.keys()) | ||
| 384 | accepts_eta = "eta" in scheduler_step_args | ||
| 385 | extra_step_kwargs = {} | ||
| 386 | if accepts_eta: | ||
| 387 | extra_step_kwargs["eta"] = eta | ||
| 388 | accepts_generator = "generator" in scheduler_step_args | ||
| 389 | if generator is not None and accepts_generator: | ||
| 390 | extra_step_kwargs["generator"] = generator | ||
| 391 | |||
| 392 | for i, t in enumerate(self.progress_bar(timesteps_tensor)): | ||
| 393 | # expand the latents if we are doing classifier free guidance | ||
| 394 | latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | ||
| 395 | if isinstance(self.scheduler, LMSDiscreteScheduler): | ||
| 396 | sigma = self.scheduler.sigmas[i] | ||
| 397 | # the model input needs to be scaled to match the continuous ODE formulation in K-LMS | ||
| 398 | latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5) | ||
| 399 | |||
| 400 | noise_pred = None | ||
| 401 | if isinstance(self.scheduler, EulerAScheduler): | ||
| 402 | sigma = t.reshape(1) | ||
| 403 | sigma_in = torch.cat([sigma] * 2) | ||
| 404 | # noise_pred = model(latent_model_input,sigma_in,uncond_embeddings, text_embeddings,guidance_scale) | ||
| 405 | noise_pred = CFGDenoiserForward(self.unet, latent_model_input, sigma_in, | ||
| 406 | text_embeddings, guidance_scale, DSsigmas=self.scheduler.DSsigmas) | ||
| 407 | # noise_pred = self.unet(latent_model_input, sigma_in, encoder_hidden_states=text_embeddings).sample | ||
| 408 | else: | ||
| 409 | # predict the noise residual | ||
| 410 | noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample | ||
| 411 | |||
| 412 | # perform guidance | ||
| 413 | if do_classifier_free_guidance: | ||
| 414 | noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | ||
| 415 | noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | ||
| 416 | |||
| 417 | # perform clip guidance | ||
| 418 | if clip_guidance_scale > 0: | ||
| 419 | text_embeddings_for_guidance = ( | ||
| 420 | text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings | ||
| 421 | ) | ||
| 422 | noise_pred, latents = self.cond_fn( | ||
| 423 | latents, | ||
| 424 | t, | ||
| 425 | i, | ||
| 426 | text_embeddings_for_guidance, | ||
| 427 | noise_pred, | ||
| 428 | text_embeddings_clip, | ||
| 429 | clip_guidance_scale, | ||
| 430 | num_cutouts, | ||
| 431 | use_cutouts, | ||
| 432 | ) | ||
| 433 | |||
| 434 | # compute the previous noisy sample x_t -> x_t-1 | ||
| 435 | if isinstance(self.scheduler, LMSDiscreteScheduler): | ||
| 436 | latents = self.scheduler.step(noise_pred, i, latents, **extra_step_kwargs).prev_sample | ||
| 437 | elif isinstance(self.scheduler, EulerAScheduler): | ||
| 438 | if i < self.scheduler.timesteps.shape[0] - 1: # avoid out of bound error | ||
| 439 | t_prev = self.scheduler.timesteps[i+1] | ||
| 440 | latents = self.scheduler.step(noise_pred, t, t_prev, latents, **extra_step_kwargs).prev_sample | ||
| 441 | else: | ||
| 442 | latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | ||
| 443 | |||
| 444 | # scale and decode the image latents with vae | ||
| 445 | latents = 1 / 0.18215 * latents | ||
| 446 | image = self.vae.decode(latents).sample | ||
| 447 | |||
| 448 | image = (image / 2 + 0.5).clamp(0, 1) | ||
| 449 | image = image.cpu().permute(0, 2, 3, 1).numpy() | ||
| 450 | |||
| 451 | if output_type == "pil": | ||
| 452 | image = self.numpy_to_pil(image) | ||
| 453 | |||
| 454 | if not return_dict: | ||
| 455 | return (image, None) | ||
| 456 | |||
| 457 | return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None) | ||
| diff --git a/schedulers/scheduling_euler_a.py b/schedulers/scheduling_euler_a.py new file mode 100644 index 0000000..57a56de --- /dev/null +++ b/schedulers/scheduling_euler_a.py | |||
| @@ -0,0 +1,323 @@ | |||
| 1 | |||
| 2 | |||
| 3 | import math | ||
| 4 | import warnings | ||
| 5 | from typing import Optional, Tuple, Union | ||
| 6 | |||
| 7 | import numpy as np | ||
| 8 | import torch | ||
| 9 | |||
| 10 | from diffusers.configuration_utils import ConfigMixin, register_to_config | ||
| 11 | from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput | ||
| 12 | |||
| 13 | |||
| 14 | ''' | ||
| 15 | helper functions: append_zero(), | ||
| 16 | t_to_sigma(), | ||
| 17 | get_sigmas(), | ||
| 18 | append_dims(), | ||
| 19 | CFGDenoiserForward(), | ||
| 20 | get_scalings(), | ||
| 21 | DSsigma_to_t(), | ||
| 22 | DiscreteEpsDDPMDenoiserForward(), | ||
| 23 | to_d(), | ||
| 24 | get_ancestral_step() | ||
| 25 | need cleaning | ||
| 26 | ''' | ||
| 27 | |||
| 28 | |||
| 29 | def append_zero(x): | ||
| 30 | return torch.cat([x, x.new_zeros([1])]) | ||
| 31 | |||
| 32 | |||
| 33 | def t_to_sigma(t, sigmas): | ||
| 34 | t = t.float() | ||
| 35 | low_idx, high_idx, w = t.floor().long(), t.ceil().long(), t.frac() | ||
| 36 | return (1 - w) * sigmas[low_idx] + w * sigmas[high_idx] | ||
| 37 | |||
| 38 | |||
| 39 | def get_sigmas(sigmas, n=None): | ||
| 40 | if n is None: | ||
| 41 | return append_zero(sigmas.flip(0)) | ||
| 42 | t_max = len(sigmas) - 1 # = 999 | ||
| 43 | t = torch.linspace(t_max, 0, n, device=sigmas.device) | ||
| 44 | # t = torch.linspace(t_max, 0, n, device=sigmas.device) | ||
| 45 | return append_zero(t_to_sigma(t, sigmas)) | ||
| 46 | |||
| 47 | # from k_samplers utils.py | ||
| 48 | |||
| 49 | |||
| 50 | def append_dims(x, target_dims): | ||
| 51 | """Appends dimensions to the end of a tensor until it has target_dims dimensions.""" | ||
| 52 | dims_to_append = target_dims - x.ndim | ||
| 53 | if dims_to_append < 0: | ||
| 54 | raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less') | ||
| 55 | return x[(...,) + (None,) * dims_to_append] | ||
| 56 | |||
| 57 | |||
| 58 | def CFGDenoiserForward(Unet, x_in, sigma_in, cond_in, cond_scale, DSsigmas=None): | ||
| 59 | # x_in = torch.cat([x] * 2)#A# concat the latent | ||
| 60 | # sigma_in = torch.cat([sigma] * 2) #A# concat sigma | ||
| 61 | # cond_in = torch.cat([uncond, cond]) | ||
| 62 | # uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2) | ||
| 63 | # uncond, cond = DiscreteEpsDDPMDenoiserForward(Unet,x_in, sigma_in,DSsigmas=DSsigmas, cond=cond_in).chunk(2) | ||
| 64 | # return uncond + (cond - uncond) * cond_scale | ||
| 65 | noise_pred = DiscreteEpsDDPMDenoiserForward(Unet, x_in, sigma_in, DSsigmas=DSsigmas, cond=cond_in) | ||
| 66 | return noise_pred | ||
| 67 | |||
| 68 | # from k_samplers sampling.py | ||
| 69 | |||
| 70 | |||
| 71 | def to_d(x, sigma, denoised): | ||
| 72 | """Converts a denoiser output to a Karras ODE derivative.""" | ||
| 73 | return (x - denoised) / append_dims(sigma.to(denoised.device), x.ndim) | ||
| 74 | |||
| 75 | |||
| 76 | def get_scalings(sigma): | ||
| 77 | sigma_data = 1. | ||
| 78 | c_out = -sigma | ||
| 79 | c_in = 1 / (sigma ** 2 + sigma_data ** 2) ** 0.5 | ||
| 80 | return c_out, c_in | ||
| 81 | |||
| 82 | # DiscreteSchedule DS | ||
| 83 | |||
| 84 | |||
| 85 | def DSsigma_to_t(sigma, quantize=None, DSsigmas=None): | ||
| 86 | # quantize = self.quantize if quantize is None else quantize | ||
| 87 | quantize = False | ||
| 88 | dists = torch.abs(sigma - DSsigmas[:, None]) | ||
| 89 | if quantize: | ||
| 90 | return torch.argmin(dists, dim=0).view(sigma.shape) | ||
| 91 | low_idx, high_idx = torch.sort(torch.topk(dists, dim=0, k=2, largest=False).indices, dim=0)[0] | ||
| 92 | low, high = DSsigmas[low_idx], DSsigmas[high_idx] | ||
| 93 | w = (low - sigma) / (low - high) | ||
| 94 | w = w.clamp(0, 1) | ||
| 95 | t = (1 - w) * low_idx + w * high_idx | ||
| 96 | return t.view(sigma.shape) | ||
| 97 | |||
| 98 | |||
| 99 | def DiscreteEpsDDPMDenoiserForward(Unet, input, sigma, DSsigmas=None, **kwargs): | ||
| 100 | sigma = sigma.to(Unet.device) | ||
| 101 | DSsigmas = DSsigmas.to(Unet.device) | ||
| 102 | c_out, c_in = [append_dims(x, input.ndim) for x in get_scalings(sigma)] | ||
| 103 | # ??? what is eps? | ||
| 104 | # eps = CVDget_eps(Unet,input * c_in, DSsigma_to_t(sigma), **kwargs) | ||
| 105 | eps = Unet(input * c_in, DSsigma_to_t(sigma, DSsigmas=DSsigmas), | ||
| 106 | encoder_hidden_states=kwargs['cond']).sample | ||
| 107 | return input + eps * c_out | ||
| 108 | |||
| 109 | |||
| 110 | # from k_samplers sampling.py | ||
| 111 | def get_ancestral_step(sigma_from, sigma_to): | ||
| 112 | """Calculates the noise level (sigma_down) to step down to and the amount | ||
| 113 | of noise to add (sigma_up) when doing an ancestral sampling step.""" | ||
| 114 | sigma_up = (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5 | ||
| 115 | sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5 | ||
| 116 | return sigma_down, sigma_up | ||
| 117 | |||
| 118 | |||
| 119 | ''' | ||
| 120 | Euler Ancestral Scheduler | ||
| 121 | ''' | ||
| 122 | |||
| 123 | |||
| 124 | class EulerAScheduler(SchedulerMixin, ConfigMixin): | ||
| 125 | """ | ||
| 126 | Stochastic sampling from Karras et al. [1] tailored to the Variance-Expanding (VE) models [2]. Use Algorithm 2 and | ||
| 127 | the VE column of Table 1 from [1] for reference. | ||
| 128 | |||
| 129 | [1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models." | ||
| 130 | https://arxiv.org/abs/2206.00364 [2] Song, Yang, et al. "Score-based generative modeling through stochastic | ||
| 131 | differential equations." https://arxiv.org/abs/2011.13456 | ||
| 132 | |||
| 133 | [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` | ||
| 134 | function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. | ||
| 135 | [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and | ||
| 136 | [`~ConfigMixin.from_config`] functions. | ||
| 137 | |||
| 138 | For more details on the parameters, see the original paper's Appendix E.: "Elucidating the Design Space of | ||
| 139 | Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364. The grid search values used to find the | ||
| 140 | optimal {s_noise, s_churn, s_min, s_max} for a specific model are described in Table 5 of the paper. | ||
| 141 | |||
| 142 | Args: | ||
| 143 | sigma_min (`float`): minimum noise magnitude | ||
| 144 | sigma_max (`float`): maximum noise magnitude | ||
| 145 | s_noise (`float`): the amount of additional noise to counteract loss of detail during sampling. | ||
| 146 | A reasonable range is [1.000, 1.011]. | ||
| 147 | s_churn (`float`): the parameter controlling the overall amount of stochasticity. | ||
| 148 | A reasonable range is [0, 100]. | ||
| 149 | s_min (`float`): the start value of the sigma range where we add noise (enable stochasticity). | ||
| 150 | A reasonable range is [0, 10]. | ||
| 151 | s_max (`float`): the end value of the sigma range where we add noise. | ||
| 152 | A reasonable range is [0.2, 80]. | ||
| 153 | |||
| 154 | """ | ||
| 155 | |||
| 156 | @register_to_config | ||
| 157 | def __init__( | ||
| 158 | self, | ||
| 159 | num_train_timesteps: int = 1000, | ||
| 160 | beta_start: float = 0.0001, | ||
| 161 | beta_end: float = 0.02, | ||
| 162 | beta_schedule: str = "linear", | ||
| 163 | trained_betas: Optional[np.ndarray] = None, | ||
| 164 | clip_sample: bool = True, | ||
| 165 | set_alpha_to_one: bool = True, | ||
| 166 | steps_offset: int = 0, | ||
| 167 | ): | ||
| 168 | if trained_betas is not None: | ||
| 169 | self.betas = torch.from_numpy(trained_betas) | ||
| 170 | if beta_schedule == "linear": | ||
| 171 | self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) | ||
| 172 | elif beta_schedule == "scaled_linear": | ||
| 173 | # this schedule is very specific to the latent diffusion model. | ||
| 174 | self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 | ||
| 175 | elif beta_schedule == "squaredcos_cap_v2": | ||
| 176 | # Glide cosine schedule | ||
| 177 | self.betas = betas_for_alpha_bar(num_train_timesteps) | ||
| 178 | else: | ||
| 179 | raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") | ||
| 180 | |||
| 181 | self.alphas = 1.0 - self.betas | ||
| 182 | self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) | ||
| 183 | |||
| 184 | # At every step in ddim, we are looking into the previous alphas_cumprod | ||
| 185 | # For the final step, there is no previous alphas_cumprod because we are already at 0 | ||
| 186 | # `set_alpha_to_one` decides whether we set this parameter simply to one or | ||
| 187 | # whether we use the final alpha of the "non-previous" one. | ||
| 188 | self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0] | ||
| 189 | |||
| 190 | # setable values | ||
| 191 | self.num_inference_steps = None | ||
| 192 | self.timesteps = np.arange(0, num_train_timesteps)[::-1] | ||
| 193 | |||
| 194 | # A# take number of steps as input | ||
| 195 | # A# store 1) number of steps 2) timesteps 3) schedule | ||
| 196 | |||
| 197 | def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None, **kwargs): | ||
| 198 | """ | ||
| 199 | Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. | ||
| 200 | |||
| 201 | Args: | ||
| 202 | num_inference_steps (`int`): | ||
| 203 | the number of diffusion steps used when generating samples with a pre-trained model. | ||
| 204 | """ | ||
| 205 | |||
| 206 | # offset = self.config.steps_offset | ||
| 207 | |||
| 208 | # if "offset" in kwargs: | ||
| 209 | # warnings.warn( | ||
| 210 | # "`offset` is deprecated as an input argument to `set_timesteps` and will be removed in v0.4.0." | ||
| 211 | # " Please pass `steps_offset` to `__init__` instead.", | ||
| 212 | # DeprecationWarning, | ||
| 213 | # ) | ||
| 214 | |||
| 215 | # offset = kwargs["offset"] | ||
| 216 | |||
| 217 | self.num_inference_steps = num_inference_steps | ||
| 218 | self.DSsigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 | ||
| 219 | self.sigmas = get_sigmas(self.DSsigmas, self.num_inference_steps).to(device=device) | ||
| 220 | self.timesteps = self.sigmas | ||
| 221 | |||
| 222 | def add_noise_to_input( | ||
| 223 | self, sample: torch.FloatTensor, sigma: float, generator: Optional[torch.Generator] = None | ||
| 224 | ) -> Tuple[torch.FloatTensor, float]: | ||
| 225 | """ | ||
| 226 | Explicit Langevin-like "churn" step of adding noise to the sample according to a factor gamma_i ≥ 0 to reach a | ||
| 227 | higher noise level sigma_hat = sigma_i + gamma_i*sigma_i. | ||
| 228 | |||
| 229 | TODO Args: | ||
| 230 | """ | ||
| 231 | if self.config.s_min <= sigma <= self.config.s_max: | ||
| 232 | gamma = min(self.config.s_churn / self.num_inference_steps, 2**0.5 - 1) | ||
| 233 | else: | ||
| 234 | gamma = 0 | ||
| 235 | |||
| 236 | # sample eps ~ N(0, S_noise^2 * I) | ||
| 237 | eps = self.config.s_noise * torch.randn(sample.shape, generator=generator).to(sample.device) | ||
| 238 | sigma_hat = sigma + gamma * sigma | ||
| 239 | sample_hat = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) | ||
| 240 | |||
| 241 | return sample_hat, sigma_hat | ||
| 242 | |||
| 243 | def step( | ||
| 244 | self, | ||
| 245 | model_output: torch.FloatTensor, | ||
| 246 | timestep: torch.IntTensor, | ||
| 247 | timestep_prev: torch.IntTensor, | ||
| 248 | sample: torch.FloatTensor, | ||
| 249 | generator: None, | ||
| 250 | # ,sigma_hat: float, | ||
| 251 | # sigma_prev: float, | ||
| 252 | # sample_hat: torch.FloatTensor, | ||
| 253 | return_dict: bool = True, | ||
| 254 | ) -> Union[SchedulerOutput, Tuple]: | ||
| 255 | """ | ||
| 256 | Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion | ||
| 257 | process from the learned model outputs (most often the predicted noise). | ||
| 258 | |||
| 259 | Args: | ||
| 260 | model_output (`torch.FloatTensor`): direct output from learned diffusion model. | ||
| 261 | sigma_hat (`float`): TODO | ||
| 262 | sigma_prev (`float`): TODO | ||
| 263 | sample_hat (`torch.FloatTensor`): TODO | ||
| 264 | return_dict (`bool`): option for returning tuple rather than SchedulerOutput class | ||
| 265 | |||
| 266 | EulerAOutput: updated sample in the diffusion chain and derivative (TODO double check). | ||
| 267 | Returns: | ||
| 268 | [`~schedulers.scheduling_karras_ve.EulerAOutput`] or `tuple`: | ||
| 269 | [`~schedulers.scheduling_karras_ve.EulerAOutput`] if `return_dict` is True, otherwise a `tuple`. When | ||
| 270 | returning a tuple, the first element is the sample tensor. | ||
| 271 | |||
| 272 | """ | ||
| 273 | latents = sample | ||
| 274 | sigma_down, sigma_up = get_ancestral_step(timestep, timestep_prev) | ||
| 275 | |||
| 276 | # if callback is not None: | ||
| 277 | # callback({'x': latents, 'i': i, 'sigma': timestep, 'sigma_hat': timestep, 'denoised': model_output}) | ||
| 278 | d = to_d(latents, timestep, model_output) | ||
| 279 | # Euler method | ||
| 280 | dt = sigma_down - timestep | ||
| 281 | latents = latents + d * dt | ||
| 282 | latents = latents + torch.randn(latents.shape, layout=latents.layout, device=latents.device, | ||
| 283 | generator=generator) * sigma_up | ||
| 284 | return SchedulerOutput(prev_sample=latents) | ||
| 285 | |||
| 286 | def step_correct( | ||
| 287 | self, | ||
| 288 | model_output: torch.FloatTensor, | ||
| 289 | sigma_hat: float, | ||
| 290 | sigma_prev: float, | ||
| 291 | sample_hat: torch.FloatTensor, | ||
| 292 | sample_prev: torch.FloatTensor, | ||
| 293 | derivative: torch.FloatTensor, | ||
| 294 | generator: None, | ||
| 295 | return_dict: bool = True, | ||
| 296 | ) -> Union[SchedulerOutput, Tuple]: | ||
| 297 | """ | ||
| 298 | Correct the predicted sample based on the output model_output of the network. TODO complete description | ||
| 299 | |||
| 300 | Args: | ||
| 301 | model_output (`torch.FloatTensor`): direct output from learned diffusion model. | ||
| 302 | sigma_hat (`float`): TODO | ||
| 303 | sigma_prev (`float`): TODO | ||
| 304 | sample_hat (`torch.FloatTensor`): TODO | ||
| 305 | sample_prev (`torch.FloatTensor`): TODO | ||
| 306 | derivative (`torch.FloatTensor`): TODO | ||
| 307 | return_dict (`bool`): option for returning tuple rather than SchedulerOutput class | ||
| 308 | |||
| 309 | Returns: | ||
| 310 | prev_sample (TODO): updated sample in the diffusion chain. derivative (TODO): TODO | ||
| 311 | |||
| 312 | """ | ||
| 313 | pred_original_sample = sample_prev + sigma_prev * model_output | ||
| 314 | derivative_corr = (sample_prev - pred_original_sample) / sigma_prev | ||
| 315 | sample_prev = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) | ||
| 316 | |||
| 317 | if not return_dict: | ||
| 318 | return (sample_prev, derivative) | ||
| 319 | |||
| 320 | return SchedulerOutput(prev_sample=sample_prev) | ||
| 321 | |||
| 322 | def add_noise(self, original_samples, noise, timesteps): | ||
| 323 | raise NotImplementedError() | ||
