diff options
| -rw-r--r-- | dreambooth.py | 41 | ||||
| -rw-r--r-- | dreambooth_plus.py | 33 | ||||
| -rw-r--r-- | textual_inversion.py | 28 |
3 files changed, 69 insertions, 33 deletions
diff --git a/dreambooth.py b/dreambooth.py index 1ba8dc0..9e2645b 100644 --- a/dreambooth.py +++ b/dreambooth.py | |||
| @@ -15,7 +15,7 @@ from accelerate import Accelerator | |||
| 15 | from accelerate.logging import get_logger | 15 | from accelerate.logging import get_logger |
| 16 | from accelerate.utils import LoggerType, set_seed | 16 | from accelerate.utils import LoggerType, set_seed |
| 17 | from diffusers import AutoencoderKL, DDPMScheduler, PNDMScheduler, UNet2DConditionModel | 17 | from diffusers import AutoencoderKL, DDPMScheduler, PNDMScheduler, UNet2DConditionModel |
| 18 | from diffusers.optimization import get_scheduler | 18 | from diffusers.optimization import get_scheduler, get_cosine_with_hard_restarts_schedule_with_warmup |
| 19 | from diffusers.training_utils import EMAModel | 19 | from diffusers.training_utils import EMAModel |
| 20 | from PIL import Image | 20 | from PIL import Image |
| 21 | from tqdm.auto import tqdm | 21 | from tqdm.auto import tqdm |
| @@ -150,10 +150,16 @@ def parse_args(): | |||
| 150 | parser.add_argument( | 150 | parser.add_argument( |
| 151 | "--lr_warmup_steps", | 151 | "--lr_warmup_steps", |
| 152 | type=int, | 152 | type=int, |
| 153 | default=500, | 153 | default=300, |
| 154 | help="Number of steps for the warmup in the lr scheduler." | 154 | help="Number of steps for the warmup in the lr scheduler." |
| 155 | ) | 155 | ) |
| 156 | parser.add_argument( | 156 | parser.add_argument( |
| 157 | "--lr_cycles", | ||
| 158 | type=int, | ||
| 159 | default=2, | ||
| 160 | help="Number of restart cycles in the lr scheduler." | ||
| 161 | ) | ||
| 162 | parser.add_argument( | ||
| 157 | "--use_ema", | 163 | "--use_ema", |
| 158 | action="store_true", | 164 | action="store_true", |
| 159 | default=True, | 165 | default=True, |
| @@ -167,7 +173,7 @@ def parse_args(): | |||
| 167 | parser.add_argument( | 173 | parser.add_argument( |
| 168 | "--ema_power", | 174 | "--ema_power", |
| 169 | type=float, | 175 | type=float, |
| 170 | default=6 / 7 | 176 | default=9 / 10 |
| 171 | ) | 177 | ) |
| 172 | parser.add_argument( | 178 | parser.add_argument( |
| 173 | "--ema_max_decay", | 179 | "--ema_max_decay", |
| @@ -296,6 +302,13 @@ def parse_args(): | |||
| 296 | return args | 302 | return args |
| 297 | 303 | ||
| 298 | 304 | ||
| 305 | def save_args(basepath: Path, args, extra={}): | ||
| 306 | info = {"args": vars(args)} | ||
| 307 | info["args"].update(extra) | ||
| 308 | with open(basepath.joinpath("args.json"), "w") as f: | ||
| 309 | json.dump(info, f, indent=4) | ||
| 310 | |||
| 311 | |||
| 299 | def freeze_params(params): | 312 | def freeze_params(params): |
| 300 | for param in params: | 313 | for param in params: |
| 301 | param.requires_grad = False | 314 | param.requires_grad = False |
| @@ -455,6 +468,8 @@ def main(): | |||
| 455 | 468 | ||
| 456 | logging.basicConfig(filename=basepath.joinpath("log.txt"), level=logging.DEBUG) | 469 | logging.basicConfig(filename=basepath.joinpath("log.txt"), level=logging.DEBUG) |
| 457 | 470 | ||
| 471 | save_args(basepath, args) | ||
| 472 | |||
| 458 | # If passed along, set the training seed now. | 473 | # If passed along, set the training seed now. |
| 459 | if args.seed is not None: | 474 | if args.seed is not None: |
| 460 | set_seed(args.seed) | 475 | set_seed(args.seed) |
| @@ -614,12 +629,20 @@ def main(): | |||
| 614 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | 629 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
| 615 | overrode_max_train_steps = True | 630 | overrode_max_train_steps = True |
| 616 | 631 | ||
| 617 | lr_scheduler = get_scheduler( | 632 | if args.lr_scheduler == "cosine_with_restarts": |
| 618 | args.lr_scheduler, | 633 | lr_scheduler = get_cosine_with_hard_restarts_schedule_with_warmup( |
| 619 | optimizer=optimizer, | 634 | optimizer=optimizer, |
| 620 | num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, | 635 | num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, |
| 621 | num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, | 636 | num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, |
| 622 | ) | 637 | num_cycles=args.lr_cycles, |
| 638 | ) | ||
| 639 | else: | ||
| 640 | lr_scheduler = get_scheduler( | ||
| 641 | args.lr_scheduler, | ||
| 642 | optimizer=optimizer, | ||
| 643 | num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, | ||
| 644 | num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, | ||
| 645 | ) | ||
| 623 | 646 | ||
| 624 | unet, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( | 647 | unet, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( |
| 625 | unet, optimizer, train_dataloader, val_dataloader, lr_scheduler | 648 | unet, optimizer, train_dataloader, val_dataloader, lr_scheduler |
diff --git a/dreambooth_plus.py b/dreambooth_plus.py index eeee424..42994af 100644 --- a/dreambooth_plus.py +++ b/dreambooth_plus.py | |||
| @@ -118,7 +118,7 @@ def parse_args(): | |||
| 118 | parser.add_argument( | 118 | parser.add_argument( |
| 119 | "--max_train_steps", | 119 | "--max_train_steps", |
| 120 | type=int, | 120 | type=int, |
| 121 | default=1300, | 121 | default=1200, |
| 122 | help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | 122 | help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
| 123 | ) | 123 | ) |
| 124 | parser.add_argument( | 124 | parser.add_argument( |
| @@ -141,7 +141,7 @@ def parse_args(): | |||
| 141 | parser.add_argument( | 141 | parser.add_argument( |
| 142 | "--learning_rate_text", | 142 | "--learning_rate_text", |
| 143 | type=float, | 143 | type=float, |
| 144 | default=5e-6, | 144 | default=1e-6, |
| 145 | help="Initial learning rate (after the potential warmup period) to use.", | 145 | help="Initial learning rate (after the potential warmup period) to use.", |
| 146 | ) | 146 | ) |
| 147 | parser.add_argument( | 147 | parser.add_argument( |
| @@ -153,7 +153,7 @@ def parse_args(): | |||
| 153 | parser.add_argument( | 153 | parser.add_argument( |
| 154 | "--lr_scheduler", | 154 | "--lr_scheduler", |
| 155 | type=str, | 155 | type=str, |
| 156 | default="cosine", | 156 | default="cosine_with_restarts", |
| 157 | help=( | 157 | help=( |
| 158 | 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | 158 | 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
| 159 | ' "constant", "constant_with_warmup"]' | 159 | ' "constant", "constant_with_warmup"]' |
| @@ -162,10 +162,16 @@ def parse_args(): | |||
| 162 | parser.add_argument( | 162 | parser.add_argument( |
| 163 | "--lr_warmup_steps", | 163 | "--lr_warmup_steps", |
| 164 | type=int, | 164 | type=int, |
| 165 | default=500, | 165 | default=300, |
| 166 | help="Number of steps for the warmup in the lr scheduler." | 166 | help="Number of steps for the warmup in the lr scheduler." |
| 167 | ) | 167 | ) |
| 168 | parser.add_argument( | 168 | parser.add_argument( |
| 169 | "--lr_cycles", | ||
| 170 | type=int, | ||
| 171 | default=2, | ||
| 172 | help="Number of restart cycles in the lr scheduler." | ||
| 173 | ) | ||
| 174 | parser.add_argument( | ||
| 169 | "--use_ema", | 175 | "--use_ema", |
| 170 | action="store_true", | 176 | action="store_true", |
| 171 | default=True, | 177 | default=True, |
| @@ -179,7 +185,7 @@ def parse_args(): | |||
| 179 | parser.add_argument( | 185 | parser.add_argument( |
| 180 | "--ema_power", | 186 | "--ema_power", |
| 181 | type=float, | 187 | type=float, |
| 182 | default=6 / 7 | 188 | default=9 / 10 |
| 183 | ) | 189 | ) |
| 184 | parser.add_argument( | 190 | parser.add_argument( |
| 185 | "--ema_max_decay", | 191 | "--ema_max_decay", |
| @@ -565,6 +571,7 @@ def main(): | |||
| 565 | 571 | ||
| 566 | # Initialise the newly added placeholder token with the embeddings of the initializer token | 572 | # Initialise the newly added placeholder token with the embeddings of the initializer token |
| 567 | token_embeds = text_encoder.get_input_embeddings().weight.data | 573 | token_embeds = text_encoder.get_input_embeddings().weight.data |
| 574 | original_token_embeds = token_embeds.detach().clone().to(accelerator.device) | ||
| 568 | initializer_token_embeddings = text_encoder.get_input_embeddings()(initializer_token_ids) | 575 | initializer_token_embeddings = text_encoder.get_input_embeddings()(initializer_token_ids) |
| 569 | token_embeds[placeholder_token_id] = initializer_token_embeddings | 576 | token_embeds[placeholder_token_id] = initializer_token_embeddings |
| 570 | 577 | ||
| @@ -717,11 +724,10 @@ def main(): | |||
| 717 | 724 | ||
| 718 | if args.lr_scheduler == "cosine_with_restarts": | 725 | if args.lr_scheduler == "cosine_with_restarts": |
| 719 | lr_scheduler = get_cosine_with_hard_restarts_schedule_with_warmup( | 726 | lr_scheduler = get_cosine_with_hard_restarts_schedule_with_warmup( |
| 720 | args.lr_scheduler, | ||
| 721 | optimizer=optimizer, | 727 | optimizer=optimizer, |
| 722 | num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, | 728 | num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, |
| 723 | num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, | 729 | num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, |
| 724 | num_cycles=num_update_steps_per_epoch, | 730 | num_cycles=args.lr_cycles, |
| 725 | ) | 731 | ) |
| 726 | else: | 732 | else: |
| 727 | lr_scheduler = get_scheduler( | 733 | lr_scheduler = get_scheduler( |
| @@ -857,15 +863,16 @@ def main(): | |||
| 857 | 863 | ||
| 858 | accelerator.backward(loss) | 864 | accelerator.backward(loss) |
| 859 | 865 | ||
| 860 | # Zero out the gradients for all token embeddings except the newly added | 866 | # Keep the token embeddings fixed except the newly added |
| 861 | # embeddings for the concept, as we only want to optimize the concept embeddings | 867 | # embeddings for the concept, as we only want to optimize the concept embeddings |
| 862 | if accelerator.num_processes > 1: | 868 | if accelerator.num_processes > 1: |
| 863 | grads = text_encoder.module.get_input_embeddings().weight.grad | 869 | token_embeds = text_encoder.module.get_input_embeddings().weight |
| 864 | else: | 870 | else: |
| 865 | grads = text_encoder.get_input_embeddings().weight.grad | 871 | token_embeds = text_encoder.get_input_embeddings().weight |
| 866 | # Get the index for tokens that we want to zero the grads for | 872 | |
| 867 | index_grads_to_zero = torch.arange(len(tokenizer)) != placeholder_token_id | 873 | # Get the index for tokens that we want to freeze |
| 868 | grads.data[index_grads_to_zero, :] = grads.data[index_grads_to_zero, :].fill_(0) | 874 | index_fixed_tokens = torch.arange(len(tokenizer)) != placeholder_token_id |
| 875 | token_embeds.data[index_fixed_tokens, :] = original_token_embeds[index_fixed_tokens, :] | ||
| 869 | 876 | ||
| 870 | if accelerator.sync_gradients: | 877 | if accelerator.sync_gradients: |
| 871 | accelerator.clip_grad_norm_(unet.parameters(), args.max_grad_norm) | 878 | accelerator.clip_grad_norm_(unet.parameters(), args.max_grad_norm) |
diff --git a/textual_inversion.py b/textual_inversion.py index 2109d13..61c96b7 100644 --- a/textual_inversion.py +++ b/textual_inversion.py | |||
| @@ -155,10 +155,16 @@ def parse_args(): | |||
| 155 | parser.add_argument( | 155 | parser.add_argument( |
| 156 | "--lr_warmup_steps", | 156 | "--lr_warmup_steps", |
| 157 | type=int, | 157 | type=int, |
| 158 | default=500, | 158 | default=300, |
| 159 | help="Number of steps for the warmup in the lr scheduler." | 159 | help="Number of steps for the warmup in the lr scheduler." |
| 160 | ) | 160 | ) |
| 161 | parser.add_argument( | 161 | parser.add_argument( |
| 162 | "--lr_cycles", | ||
| 163 | type=int, | ||
| 164 | default=15, | ||
| 165 | help="Number of restart cycles in the lr scheduler." | ||
| 166 | ) | ||
| 167 | parser.add_argument( | ||
| 162 | "--use_8bit_adam", | 168 | "--use_8bit_adam", |
| 163 | action="store_true", | 169 | action="store_true", |
| 164 | help="Whether or not to use 8-bit Adam from bitsandbytes." | 170 | help="Whether or not to use 8-bit Adam from bitsandbytes." |
| @@ -515,13 +521,13 @@ def main(): | |||
| 515 | 521 | ||
| 516 | # Initialise the newly added placeholder token with the embeddings of the initializer token | 522 | # Initialise the newly added placeholder token with the embeddings of the initializer token |
| 517 | token_embeds = text_encoder.get_input_embeddings().weight.data | 523 | token_embeds = text_encoder.get_input_embeddings().weight.data |
| 518 | 524 | original_token_embeds = token_embeds.detach().clone().to(accelerator.device) | |
| 519 | initializer_token_embeddings = text_encoder.get_input_embeddings()(initializer_token_ids) | ||
| 520 | 525 | ||
| 521 | if args.resume_checkpoint is not None: | 526 | if args.resume_checkpoint is not None: |
| 522 | token_embeds[placeholder_token_id] = torch.load(args.resume_checkpoint)[ | 527 | token_embeds[placeholder_token_id] = torch.load(args.resume_checkpoint)[ |
| 523 | args.placeholder_token] | 528 | args.placeholder_token] |
| 524 | else: | 529 | else: |
| 530 | initializer_token_embeddings = text_encoder.get_input_embeddings()(initializer_token_ids) | ||
| 525 | token_embeds[placeholder_token_id] = initializer_token_embeddings | 531 | token_embeds[placeholder_token_id] = initializer_token_embeddings |
| 526 | 532 | ||
| 527 | # Freeze vae and unet | 533 | # Freeze vae and unet |
| @@ -662,11 +668,10 @@ def main(): | |||
| 662 | 668 | ||
| 663 | if args.lr_scheduler == "cosine_with_restarts": | 669 | if args.lr_scheduler == "cosine_with_restarts": |
| 664 | lr_scheduler = get_cosine_with_hard_restarts_schedule_with_warmup( | 670 | lr_scheduler = get_cosine_with_hard_restarts_schedule_with_warmup( |
| 665 | args.lr_scheduler, | ||
| 666 | optimizer=optimizer, | 671 | optimizer=optimizer, |
| 667 | num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, | 672 | num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, |
| 668 | num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, | 673 | num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, |
| 669 | num_cycles=num_update_steps_per_epoch, | 674 | num_cycles=args.lr_cycles, |
| 670 | ) | 675 | ) |
| 671 | else: | 676 | else: |
| 672 | lr_scheduler = get_scheduler( | 677 | lr_scheduler = get_scheduler( |
| @@ -803,15 +808,16 @@ def main(): | |||
| 803 | 808 | ||
| 804 | accelerator.backward(loss) | 809 | accelerator.backward(loss) |
| 805 | 810 | ||
| 806 | # Zero out the gradients for all token embeddings except the newly added | 811 | # Keep the token embeddings fixed except the newly added |
| 807 | # embeddings for the concept, as we only want to optimize the concept embeddings | 812 | # embeddings for the concept, as we only want to optimize the concept embeddings |
| 808 | if accelerator.num_processes > 1: | 813 | if accelerator.num_processes > 1: |
| 809 | grads = text_encoder.module.get_input_embeddings().weight.grad | 814 | token_embeds = text_encoder.module.get_input_embeddings().weight |
| 810 | else: | 815 | else: |
| 811 | grads = text_encoder.get_input_embeddings().weight.grad | 816 | token_embeds = text_encoder.get_input_embeddings().weight |
| 812 | # Get the index for tokens that we want to zero the grads for | 817 | |
| 813 | index_grads_to_zero = torch.arange(len(tokenizer)) != placeholder_token_id | 818 | # Get the index for tokens that we want to freeze |
| 814 | grads.data[index_grads_to_zero, :] = grads.data[index_grads_to_zero, :].fill_(0) | 819 | index_fixed_tokens = torch.arange(len(tokenizer)) != placeholder_token_id |
| 820 | token_embeds.data[index_fixed_tokens, :] = original_token_embeds[index_fixed_tokens, :] | ||
| 815 | 821 | ||
| 816 | optimizer.step() | 822 | optimizer.step() |
| 817 | if not accelerator.optimizer_step_was_skipped: | 823 | if not accelerator.optimizer_step_was_skipped: |
