diff options
Diffstat (limited to 'aesthetic_gradient.py')
-rw-r--r-- | aesthetic_gradient.py | 137 |
1 files changed, 137 insertions, 0 deletions
diff --git a/aesthetic_gradient.py b/aesthetic_gradient.py new file mode 100644 index 0000000..5386d0f --- /dev/null +++ b/aesthetic_gradient.py | |||
@@ -0,0 +1,137 @@ | |||
1 | import argparse | ||
2 | import datetime | ||
3 | import logging | ||
4 | import json | ||
5 | from pathlib import Path | ||
6 | |||
7 | import torch | ||
8 | import torch.utils.checkpoint | ||
9 | from torchvision import transforms | ||
10 | import pandas as pd | ||
11 | |||
12 | from accelerate.logging import get_logger | ||
13 | from PIL import Image | ||
14 | from tqdm import tqdm | ||
15 | from transformers import CLIPModel | ||
16 | from slugify import slugify | ||
17 | |||
18 | logger = get_logger(__name__) | ||
19 | |||
20 | |||
21 | torch.backends.cuda.matmul.allow_tf32 = True | ||
22 | |||
23 | |||
24 | def parse_args(): | ||
25 | parser = argparse.ArgumentParser( | ||
26 | description="Simple example of a training script." | ||
27 | ) | ||
28 | parser.add_argument( | ||
29 | "--pretrained_model_name_or_path", | ||
30 | type=str, | ||
31 | default=None, | ||
32 | help="Path to pretrained model or model identifier from huggingface.co/models.", | ||
33 | ) | ||
34 | parser.add_argument( | ||
35 | "--train_data_file", | ||
36 | type=str, | ||
37 | default=None, | ||
38 | help="A directory." | ||
39 | ) | ||
40 | parser.add_argument( | ||
41 | "--token", | ||
42 | type=str, | ||
43 | default=None, | ||
44 | help="A token to use as a placeholder for the concept.", | ||
45 | ) | ||
46 | parser.add_argument( | ||
47 | "--resolution", | ||
48 | type=int, | ||
49 | default=224, | ||
50 | help=( | ||
51 | "The resolution for input images, all the images in the train/validation dataset will be resized to this" | ||
52 | " resolution" | ||
53 | ), | ||
54 | ) | ||
55 | parser.add_argument( | ||
56 | "--output_dir", | ||
57 | type=str, | ||
58 | default="output/aesthetic-gradient", | ||
59 | help="The output directory where the model predictions and checkpoints will be written.", | ||
60 | ) | ||
61 | parser.add_argument( | ||
62 | "--config", | ||
63 | type=str, | ||
64 | default=None, | ||
65 | help="Path to a JSON configuration file containing arguments for invoking this script. If resume_from is given, its resume.json takes priority over this." | ||
66 | ) | ||
67 | |||
68 | args = parser.parse_args() | ||
69 | if args.config is not None: | ||
70 | with open(args.config, 'rt') as f: | ||
71 | args = parser.parse_args( | ||
72 | namespace=argparse.Namespace(**json.load(f)["args"])) | ||
73 | |||
74 | if args.train_data_file is None: | ||
75 | raise ValueError("You must specify --train_data_file") | ||
76 | |||
77 | if args.token is None: | ||
78 | raise ValueError("You must specify --token") | ||
79 | |||
80 | if args.output_dir is None: | ||
81 | raise ValueError("You must specify --output_dir") | ||
82 | |||
83 | return args | ||
84 | |||
85 | |||
86 | def main(): | ||
87 | args = parse_args() | ||
88 | |||
89 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | ||
90 | basepath = Path(args.output_dir) | ||
91 | basepath.mkdir(parents=True, exist_ok=True) | ||
92 | target = basepath.joinpath(f"{slugify(args.token)}-{now}.pt") | ||
93 | |||
94 | logging.basicConfig(filename=basepath.joinpath("log.txt"), level=logging.DEBUG) | ||
95 | |||
96 | data_file = Path(args.train_data_file) | ||
97 | if not data_file.is_file(): | ||
98 | raise ValueError("data_file must be a file") | ||
99 | data_root = data_file.parent | ||
100 | metadata = pd.read_csv(data_file) | ||
101 | image_paths = [ | ||
102 | data_root.joinpath(item.image) | ||
103 | for item in metadata.itertuples() | ||
104 | if "skip" not in item or item.skip != "x" | ||
105 | ] | ||
106 | |||
107 | model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14") | ||
108 | |||
109 | image_transforms = transforms.Compose( | ||
110 | [ | ||
111 | transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.LANCZOS), | ||
112 | transforms.RandomCrop(args.resolution), | ||
113 | transforms.ToTensor(), | ||
114 | transforms.Normalize([0.5], [0.5]), | ||
115 | ] | ||
116 | ) | ||
117 | |||
118 | with torch.no_grad(): | ||
119 | embs = [] | ||
120 | for path in tqdm(image_paths): | ||
121 | image = Image.open(path) | ||
122 | if not image.mode == "RGB": | ||
123 | image = image.convert("RGB") | ||
124 | image = image_transforms(image).unsqueeze(0) | ||
125 | emb = model.get_image_features(image) | ||
126 | print(f">>>> {emb.shape}") | ||
127 | embs.append(emb) | ||
128 | |||
129 | embs = torch.cat(embs, dim=0).mean(dim=0, keepdim=True) | ||
130 | |||
131 | print(embs.shape) | ||
132 | |||
133 | torch.save(embs, target) | ||
134 | |||
135 | |||
136 | if __name__ == "__main__": | ||
137 | main() | ||