diff options
Diffstat (limited to 'data/dreambooth')
| -rw-r--r-- | data/dreambooth/csv.py | 108 | ||||
| -rw-r--r-- | data/dreambooth/prompt.py | 4 |
2 files changed, 53 insertions, 59 deletions
diff --git a/data/dreambooth/csv.py b/data/dreambooth/csv.py index c0b0067..4ebdc13 100644 --- a/data/dreambooth/csv.py +++ b/data/dreambooth/csv.py | |||
| @@ -13,13 +13,11 @@ class CSVDataModule(pl.LightningDataModule): | |||
| 13 | batch_size, | 13 | batch_size, |
| 14 | data_file, | 14 | data_file, |
| 15 | tokenizer, | 15 | tokenizer, |
| 16 | instance_prompt, | 16 | instance_identifier, |
| 17 | class_data_root=None, | 17 | class_identifier=None, |
| 18 | class_prompt=None, | ||
| 19 | size=512, | 18 | size=512, |
| 20 | repeats=100, | 19 | repeats=100, |
| 21 | interpolation="bicubic", | 20 | interpolation="bicubic", |
| 22 | identifier="*", | ||
| 23 | center_crop=False, | 21 | center_crop=False, |
| 24 | valid_set_size=None, | 22 | valid_set_size=None, |
| 25 | generator=None, | 23 | generator=None, |
| @@ -32,13 +30,14 @@ class CSVDataModule(pl.LightningDataModule): | |||
| 32 | raise ValueError("data_file must be a file") | 30 | raise ValueError("data_file must be a file") |
| 33 | 31 | ||
| 34 | self.data_root = self.data_file.parent | 32 | self.data_root = self.data_file.parent |
| 33 | self.class_root = self.data_root.joinpath("db_cls") | ||
| 34 | self.class_root.mkdir(parents=True, exist_ok=True) | ||
| 35 | |||
| 35 | self.tokenizer = tokenizer | 36 | self.tokenizer = tokenizer |
| 36 | self.instance_prompt = instance_prompt | 37 | self.instance_identifier = instance_identifier |
| 37 | self.class_data_root = class_data_root | 38 | self.class_identifier = class_identifier |
| 38 | self.class_prompt = class_prompt | ||
| 39 | self.size = size | 39 | self.size = size |
| 40 | self.repeats = repeats | 40 | self.repeats = repeats |
| 41 | self.identifier = identifier | ||
| 42 | self.center_crop = center_crop | 41 | self.center_crop = center_crop |
| 43 | self.interpolation = interpolation | 42 | self.interpolation = interpolation |
| 44 | self.valid_set_size = valid_set_size | 43 | self.valid_set_size = valid_set_size |
| @@ -48,30 +47,36 @@ class CSVDataModule(pl.LightningDataModule): | |||
| 48 | 47 | ||
| 49 | def prepare_data(self): | 48 | def prepare_data(self): |
| 50 | metadata = pd.read_csv(self.data_file) | 49 | metadata = pd.read_csv(self.data_file) |
| 51 | image_paths = [os.path.join(self.data_root, f_path) for f_path in metadata['image'].values] | 50 | instance_image_paths = [self.data_root.joinpath(f) for f in metadata['image'].values] |
| 51 | class_image_paths = [self.class_root.joinpath(Path(f).name) for f in metadata['image'].values] | ||
| 52 | prompts = metadata['prompt'].values | 52 | prompts = metadata['prompt'].values |
| 53 | nprompts = metadata['nprompt'].values if 'nprompt' in metadata else [""] * len(image_paths) | 53 | nprompts = metadata['nprompt'].values if 'nprompt' in metadata else [""] * len(instance_image_paths) |
| 54 | skips = metadata['skip'].values if 'skip' in metadata else [""] * len(image_paths) | 54 | skips = metadata['skip'].values if 'skip' in metadata else [""] * len(instance_image_paths) |
| 55 | self.data_full = [(i, p, n) for i, p, n, s in zip(image_paths, prompts, nprompts, skips) if s != "x"] | 55 | self.data = [(i, c, p, n) |
| 56 | for i, c, p, n, s | ||
| 57 | in zip(instance_image_paths, class_image_paths, prompts, nprompts, skips) | ||
| 58 | if s != "x"] | ||
| 56 | 59 | ||
| 57 | def setup(self, stage=None): | 60 | def setup(self, stage=None): |
| 58 | valid_set_size = int(len(self.data_full) * 0.2) | 61 | valid_set_size = int(len(self.data) * 0.2) |
| 59 | if self.valid_set_size: | 62 | if self.valid_set_size: |
| 60 | valid_set_size = min(valid_set_size, self.valid_set_size) | 63 | valid_set_size = min(valid_set_size, self.valid_set_size) |
| 61 | train_set_size = len(self.data_full) - valid_set_size | 64 | valid_set_size = max(valid_set_size, 1) |
| 65 | train_set_size = len(self.data) - valid_set_size | ||
| 62 | 66 | ||
| 63 | self.data_train, self.data_val = random_split(self.data_full, [train_set_size, valid_set_size], self.generator) | 67 | self.data_train, self.data_val = random_split(self.data, [train_set_size, valid_set_size], self.generator) |
| 64 | 68 | ||
| 65 | train_dataset = CSVDataset(self.data_train, self.tokenizer, instance_prompt=self.instance_prompt, | 69 | train_dataset = CSVDataset(self.data_train, self.tokenizer, |
| 66 | class_data_root=self.class_data_root, class_prompt=self.class_prompt, | 70 | instance_identifier=self.instance_identifier, class_identifier=self.class_identifier, |
| 67 | size=self.size, interpolation=self.interpolation, identifier=self.identifier, | 71 | size=self.size, interpolation=self.interpolation, |
| 68 | center_crop=self.center_crop, repeats=self.repeats, batch_size=self.batch_size) | 72 | center_crop=self.center_crop, repeats=self.repeats) |
| 69 | val_dataset = CSVDataset(self.data_val, self.tokenizer, instance_prompt=self.instance_prompt, | 73 | val_dataset = CSVDataset(self.data_val, self.tokenizer, |
| 70 | size=self.size, interpolation=self.interpolation, identifier=self.identifier, | 74 | instance_identifier=self.instance_identifier, |
| 71 | center_crop=self.center_crop, batch_size=self.batch_size) | 75 | size=self.size, interpolation=self.interpolation, |
| 72 | self.train_dataloader_ = DataLoader(train_dataset, batch_size=self.batch_size, | 76 | center_crop=self.center_crop, repeats=self.repeats) |
| 77 | self.train_dataloader_ = DataLoader(train_dataset, batch_size=self.batch_size, drop_last=True, | ||
| 73 | shuffle=True, pin_memory=True, collate_fn=self.collate_fn) | 78 | shuffle=True, pin_memory=True, collate_fn=self.collate_fn) |
| 74 | self.val_dataloader_ = DataLoader(val_dataset, batch_size=self.batch_size, | 79 | self.val_dataloader_ = DataLoader(val_dataset, batch_size=self.batch_size, drop_last=True, |
| 75 | pin_memory=True, collate_fn=self.collate_fn) | 80 | pin_memory=True, collate_fn=self.collate_fn) |
| 76 | 81 | ||
| 77 | def train_dataloader(self): | 82 | def train_dataloader(self): |
| @@ -85,39 +90,23 @@ class CSVDataset(Dataset): | |||
| 85 | def __init__(self, | 90 | def __init__(self, |
| 86 | data, | 91 | data, |
| 87 | tokenizer, | 92 | tokenizer, |
| 88 | instance_prompt, | 93 | instance_identifier, |
| 89 | class_data_root=None, | 94 | class_identifier=None, |
| 90 | class_prompt=None, | ||
| 91 | size=512, | 95 | size=512, |
| 92 | repeats=1, | 96 | repeats=1, |
| 93 | interpolation="bicubic", | 97 | interpolation="bicubic", |
| 94 | identifier="*", | ||
| 95 | center_crop=False, | 98 | center_crop=False, |
| 96 | batch_size=1, | ||
| 97 | ): | 99 | ): |
| 98 | 100 | ||
| 99 | self.data = data | 101 | self.data = data |
| 100 | self.tokenizer = tokenizer | 102 | self.tokenizer = tokenizer |
| 101 | self.instance_prompt = instance_prompt | 103 | self.instance_identifier = instance_identifier |
| 102 | self.identifier = identifier | 104 | self.class_identifier = class_identifier |
| 103 | self.batch_size = batch_size | ||
| 104 | self.cache = {} | 105 | self.cache = {} |
| 105 | 106 | ||
| 106 | self.num_instance_images = len(self.data) | 107 | self.num_instance_images = len(self.data) |
| 107 | self._length = self.num_instance_images * repeats | 108 | self._length = self.num_instance_images * repeats |
| 108 | 109 | ||
| 109 | if class_data_root is not None: | ||
| 110 | self.class_data_root = Path(class_data_root) | ||
| 111 | self.class_data_root.mkdir(parents=True, exist_ok=True) | ||
| 112 | |||
| 113 | self.class_images = list(self.class_data_root.iterdir()) | ||
| 114 | self.num_class_images = len(self.class_images) | ||
| 115 | self._length = max(self.num_class_images, self.num_instance_images) | ||
| 116 | |||
| 117 | self.class_prompt = class_prompt | ||
| 118 | else: | ||
| 119 | self.class_data_root = None | ||
| 120 | |||
| 121 | self.interpolation = {"linear": transforms.InterpolationMode.NEAREST, | 110 | self.interpolation = {"linear": transforms.InterpolationMode.NEAREST, |
| 122 | "bilinear": transforms.InterpolationMode.BILINEAR, | 111 | "bilinear": transforms.InterpolationMode.BILINEAR, |
| 123 | "bicubic": transforms.InterpolationMode.BICUBIC, | 112 | "bicubic": transforms.InterpolationMode.BICUBIC, |
| @@ -134,46 +123,49 @@ class CSVDataset(Dataset): | |||
| 134 | ) | 123 | ) |
| 135 | 124 | ||
| 136 | def __len__(self): | 125 | def __len__(self): |
| 137 | return math.ceil(self._length / self.batch_size) * self.batch_size | 126 | return self._length |
| 138 | 127 | ||
| 139 | def get_example(self, i): | 128 | def get_example(self, i): |
| 140 | image_path, prompt, nprompt = self.data[i % self.num_instance_images] | 129 | instance_image_path, class_image_path, prompt, nprompt = self.data[i % self.num_instance_images] |
| 141 | 130 | ||
| 142 | if image_path in self.cache: | 131 | if instance_image_path in self.cache: |
| 143 | return self.cache[image_path] | 132 | return self.cache[instance_image_path] |
| 144 | 133 | ||
| 145 | example = {} | 134 | example = {} |
| 146 | 135 | ||
| 147 | instance_image = Image.open(image_path) | 136 | example["prompts"] = prompt |
| 137 | example["nprompts"] = nprompt | ||
| 138 | |||
| 139 | instance_image = Image.open(instance_image_path) | ||
| 148 | if not instance_image.mode == "RGB": | 140 | if not instance_image.mode == "RGB": |
| 149 | instance_image = instance_image.convert("RGB") | 141 | instance_image = instance_image.convert("RGB") |
| 150 | 142 | ||
| 151 | prompt = prompt.format(self.identifier) | 143 | instance_prompt = prompt.format(self.instance_identifier) |
| 152 | 144 | ||
| 153 | example["prompts"] = prompt | ||
| 154 | example["nprompts"] = nprompt | ||
| 155 | example["instance_images"] = instance_image | 145 | example["instance_images"] = instance_image |
| 156 | example["instance_prompt_ids"] = self.tokenizer( | 146 | example["instance_prompt_ids"] = self.tokenizer( |
| 157 | self.instance_prompt, | 147 | instance_prompt, |
| 158 | padding="do_not_pad", | 148 | padding="do_not_pad", |
| 159 | truncation=True, | 149 | truncation=True, |
| 160 | max_length=self.tokenizer.model_max_length, | 150 | max_length=self.tokenizer.model_max_length, |
| 161 | ).input_ids | 151 | ).input_ids |
| 162 | 152 | ||
| 163 | if self.class_data_root: | 153 | if self.class_identifier: |
| 164 | class_image = Image.open(self.class_images[i % self.num_class_images]) | 154 | class_image = Image.open(class_image_path) |
| 165 | if not class_image.mode == "RGB": | 155 | if not class_image.mode == "RGB": |
| 166 | class_image = class_image.convert("RGB") | 156 | class_image = class_image.convert("RGB") |
| 167 | 157 | ||
| 158 | class_prompt = prompt.format(self.class_identifier) | ||
| 159 | |||
| 168 | example["class_images"] = class_image | 160 | example["class_images"] = class_image |
| 169 | example["class_prompt_ids"] = self.tokenizer( | 161 | example["class_prompt_ids"] = self.tokenizer( |
| 170 | self.class_prompt, | 162 | class_prompt, |
| 171 | padding="do_not_pad", | 163 | padding="do_not_pad", |
| 172 | truncation=True, | 164 | truncation=True, |
| 173 | max_length=self.tokenizer.model_max_length, | 165 | max_length=self.tokenizer.model_max_length, |
| 174 | ).input_ids | 166 | ).input_ids |
| 175 | 167 | ||
| 176 | self.cache[image_path] = example | 168 | self.cache[instance_image_path] = example |
| 177 | return example | 169 | return example |
| 178 | 170 | ||
| 179 | def __getitem__(self, i): | 171 | def __getitem__(self, i): |
| @@ -185,7 +177,7 @@ class CSVDataset(Dataset): | |||
| 185 | example["instance_images"] = self.image_transforms(unprocessed_example["instance_images"]) | 177 | example["instance_images"] = self.image_transforms(unprocessed_example["instance_images"]) |
| 186 | example["instance_prompt_ids"] = unprocessed_example["instance_prompt_ids"] | 178 | example["instance_prompt_ids"] = unprocessed_example["instance_prompt_ids"] |
| 187 | 179 | ||
| 188 | if self.class_data_root: | 180 | if self.class_identifier: |
| 189 | example["class_images"] = self.image_transforms(unprocessed_example["class_images"]) | 181 | example["class_images"] = self.image_transforms(unprocessed_example["class_images"]) |
| 190 | example["class_prompt_ids"] = unprocessed_example["class_prompt_ids"] | 182 | example["class_prompt_ids"] = unprocessed_example["class_prompt_ids"] |
| 191 | 183 | ||
diff --git a/data/dreambooth/prompt.py b/data/dreambooth/prompt.py index 34f510d..b3a83ce 100644 --- a/data/dreambooth/prompt.py +++ b/data/dreambooth/prompt.py | |||
| @@ -2,8 +2,9 @@ from torch.utils.data import Dataset | |||
| 2 | 2 | ||
| 3 | 3 | ||
| 4 | class PromptDataset(Dataset): | 4 | class PromptDataset(Dataset): |
| 5 | def __init__(self, prompt, num_samples): | 5 | def __init__(self, prompt, nprompt, num_samples): |
| 6 | self.prompt = prompt | 6 | self.prompt = prompt |
| 7 | self.nprompt = nprompt | ||
| 7 | self.num_samples = num_samples | 8 | self.num_samples = num_samples |
| 8 | 9 | ||
| 9 | def __len__(self): | 10 | def __len__(self): |
| @@ -12,5 +13,6 @@ class PromptDataset(Dataset): | |||
| 12 | def __getitem__(self, index): | 13 | def __getitem__(self, index): |
| 13 | example = {} | 14 | example = {} |
| 14 | example["prompt"] = self.prompt | 15 | example["prompt"] = self.prompt |
| 16 | example["nprompt"] = self.nprompt | ||
| 15 | example["index"] = index | 17 | example["index"] = index |
| 16 | return example | 18 | return example |
