diff options
Diffstat (limited to 'data/dreambooth')
-rw-r--r-- | data/dreambooth/csv.py | 181 |
1 files changed, 0 insertions, 181 deletions
diff --git a/data/dreambooth/csv.py b/data/dreambooth/csv.py deleted file mode 100644 index abd329d..0000000 --- a/data/dreambooth/csv.py +++ /dev/null | |||
@@ -1,181 +0,0 @@ | |||
1 | import math | ||
2 | import os | ||
3 | import pandas as pd | ||
4 | from pathlib import Path | ||
5 | import pytorch_lightning as pl | ||
6 | from PIL import Image | ||
7 | from torch.utils.data import Dataset, DataLoader, random_split | ||
8 | from torchvision import transforms | ||
9 | |||
10 | |||
11 | class CSVDataModule(pl.LightningDataModule): | ||
12 | def __init__(self, | ||
13 | batch_size, | ||
14 | data_file, | ||
15 | tokenizer, | ||
16 | instance_identifier, | ||
17 | class_identifier=None, | ||
18 | class_subdir="db_cls", | ||
19 | size=512, | ||
20 | repeats=100, | ||
21 | interpolation="bicubic", | ||
22 | center_crop=False, | ||
23 | valid_set_size=None, | ||
24 | generator=None, | ||
25 | collate_fn=None): | ||
26 | super().__init__() | ||
27 | |||
28 | self.data_file = Path(data_file) | ||
29 | |||
30 | if not self.data_file.is_file(): | ||
31 | raise ValueError("data_file must be a file") | ||
32 | |||
33 | self.data_root = self.data_file.parent | ||
34 | self.class_root = self.data_root.joinpath(class_subdir) | ||
35 | self.class_root.mkdir(parents=True, exist_ok=True) | ||
36 | |||
37 | self.tokenizer = tokenizer | ||
38 | self.instance_identifier = instance_identifier | ||
39 | self.class_identifier = class_identifier | ||
40 | self.size = size | ||
41 | self.repeats = repeats | ||
42 | self.center_crop = center_crop | ||
43 | self.interpolation = interpolation | ||
44 | self.valid_set_size = valid_set_size | ||
45 | self.generator = generator | ||
46 | self.collate_fn = collate_fn | ||
47 | self.batch_size = batch_size | ||
48 | |||
49 | def prepare_data(self): | ||
50 | metadata = pd.read_csv(self.data_file) | ||
51 | instance_image_paths = [self.data_root.joinpath(f) for f in metadata['image'].values] | ||
52 | class_image_paths = [self.class_root.joinpath(Path(f).name) for f in metadata['image'].values] | ||
53 | prompts = metadata['prompt'].values | ||
54 | nprompts = metadata['nprompt'].values if 'nprompt' in metadata else [""] * len(instance_image_paths) | ||
55 | skips = metadata['skip'].values if 'skip' in metadata else [""] * len(instance_image_paths) | ||
56 | self.data = [(i, c, p, n) | ||
57 | for i, c, p, n, s | ||
58 | in zip(instance_image_paths, class_image_paths, prompts, nprompts, skips) | ||
59 | if s != "x"] | ||
60 | |||
61 | def setup(self, stage=None): | ||
62 | valid_set_size = int(len(self.data) * 0.2) | ||
63 | if self.valid_set_size: | ||
64 | valid_set_size = min(valid_set_size, self.valid_set_size) | ||
65 | valid_set_size = max(valid_set_size, 1) | ||
66 | train_set_size = len(self.data) - valid_set_size | ||
67 | |||
68 | self.data_train, self.data_val = random_split(self.data, [train_set_size, valid_set_size], self.generator) | ||
69 | |||
70 | train_dataset = CSVDataset(self.data_train, self.tokenizer, | ||
71 | instance_identifier=self.instance_identifier, class_identifier=self.class_identifier, | ||
72 | size=self.size, interpolation=self.interpolation, | ||
73 | center_crop=self.center_crop, repeats=self.repeats) | ||
74 | val_dataset = CSVDataset(self.data_val, self.tokenizer, | ||
75 | instance_identifier=self.instance_identifier, | ||
76 | size=self.size, interpolation=self.interpolation, | ||
77 | center_crop=self.center_crop, repeats=self.repeats) | ||
78 | self.train_dataloader_ = DataLoader(train_dataset, batch_size=self.batch_size, drop_last=True, | ||
79 | shuffle=True, pin_memory=True, collate_fn=self.collate_fn) | ||
80 | self.val_dataloader_ = DataLoader(val_dataset, batch_size=self.batch_size, drop_last=True, | ||
81 | pin_memory=True, collate_fn=self.collate_fn) | ||
82 | |||
83 | def train_dataloader(self): | ||
84 | return self.train_dataloader_ | ||
85 | |||
86 | def val_dataloader(self): | ||
87 | return self.val_dataloader_ | ||
88 | |||
89 | |||
90 | class CSVDataset(Dataset): | ||
91 | def __init__(self, | ||
92 | data, | ||
93 | tokenizer, | ||
94 | instance_identifier, | ||
95 | class_identifier=None, | ||
96 | size=512, | ||
97 | repeats=1, | ||
98 | interpolation="bicubic", | ||
99 | center_crop=False, | ||
100 | ): | ||
101 | |||
102 | self.data = data | ||
103 | self.tokenizer = tokenizer | ||
104 | self.instance_identifier = instance_identifier | ||
105 | self.class_identifier = class_identifier | ||
106 | self.cache = {} | ||
107 | |||
108 | self.num_instance_images = len(self.data) | ||
109 | self._length = self.num_instance_images * repeats | ||
110 | |||
111 | self.interpolation = {"linear": transforms.InterpolationMode.NEAREST, | ||
112 | "bilinear": transforms.InterpolationMode.BILINEAR, | ||
113 | "bicubic": transforms.InterpolationMode.BICUBIC, | ||
114 | "lanczos": transforms.InterpolationMode.LANCZOS, | ||
115 | }[interpolation] | ||
116 | self.image_transforms = transforms.Compose( | ||
117 | [ | ||
118 | transforms.Resize(size, interpolation=self.interpolation), | ||
119 | transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), | ||
120 | transforms.RandomHorizontalFlip(), | ||
121 | transforms.ToTensor(), | ||
122 | transforms.Normalize([0.5], [0.5]), | ||
123 | ] | ||
124 | ) | ||
125 | |||
126 | def __len__(self): | ||
127 | return self._length | ||
128 | |||
129 | def get_example(self, i): | ||
130 | instance_image_path, class_image_path, prompt, nprompt = self.data[i % self.num_instance_images] | ||
131 | |||
132 | if instance_image_path in self.cache: | ||
133 | return self.cache[instance_image_path] | ||
134 | |||
135 | example = {} | ||
136 | |||
137 | example["prompts"] = prompt | ||
138 | example["nprompts"] = nprompt | ||
139 | |||
140 | instance_image = Image.open(instance_image_path) | ||
141 | if not instance_image.mode == "RGB": | ||
142 | instance_image = instance_image.convert("RGB") | ||
143 | |||
144 | example["instance_images"] = instance_image | ||
145 | example["instance_prompt_ids"] = self.tokenizer( | ||
146 | prompt.format(self.instance_identifier), | ||
147 | padding="do_not_pad", | ||
148 | truncation=True, | ||
149 | max_length=self.tokenizer.model_max_length, | ||
150 | ).input_ids | ||
151 | |||
152 | if self.class_identifier is not None: | ||
153 | class_image = Image.open(class_image_path) | ||
154 | if not class_image.mode == "RGB": | ||
155 | class_image = class_image.convert("RGB") | ||
156 | |||
157 | example["class_images"] = class_image | ||
158 | example["class_prompt_ids"] = self.tokenizer( | ||
159 | prompt.format(self.class_identifier), | ||
160 | padding="do_not_pad", | ||
161 | truncation=True, | ||
162 | max_length=self.tokenizer.model_max_length, | ||
163 | ).input_ids | ||
164 | |||
165 | self.cache[instance_image_path] = example | ||
166 | return example | ||
167 | |||
168 | def __getitem__(self, i): | ||
169 | example = {} | ||
170 | unprocessed_example = self.get_example(i) | ||
171 | |||
172 | example["prompts"] = unprocessed_example["prompts"] | ||
173 | example["nprompts"] = unprocessed_example["nprompts"] | ||
174 | example["instance_images"] = self.image_transforms(unprocessed_example["instance_images"]) | ||
175 | example["instance_prompt_ids"] = unprocessed_example["instance_prompt_ids"] | ||
176 | |||
177 | if self.class_identifier is not None: | ||
178 | example["class_images"] = self.image_transforms(unprocessed_example["class_images"]) | ||
179 | example["class_prompt_ids"] = unprocessed_example["class_prompt_ids"] | ||
180 | |||
181 | return example | ||