diff options
Diffstat (limited to 'infer.py')
-rw-r--r-- | infer.py | 75 |
1 files changed, 52 insertions, 23 deletions
@@ -23,7 +23,8 @@ default_args = { | |||
23 | "model": None, | 23 | "model": None, |
24 | "scheduler": "euler_a", | 24 | "scheduler": "euler_a", |
25 | "precision": "fp32", | 25 | "precision": "fp32", |
26 | "embeddings_dir": "embeddings", | 26 | "ti_embeddings_dir": "embeddings_ti", |
27 | "ag_embeddings_dir": "embeddings_ag", | ||
27 | "output_dir": "output/inference", | 28 | "output_dir": "output/inference", |
28 | "config": None, | 29 | "config": None, |
29 | } | 30 | } |
@@ -73,7 +74,11 @@ def create_args_parser(): | |||
73 | choices=["fp32", "fp16", "bf16"], | 74 | choices=["fp32", "fp16", "bf16"], |
74 | ) | 75 | ) |
75 | parser.add_argument( | 76 | parser.add_argument( |
76 | "--embeddings_dir", | 77 | "--ti_embeddings_dir", |
78 | type=str, | ||
79 | ) | ||
80 | parser.add_argument( | ||
81 | "--ag_embeddings_dir", | ||
77 | type=str, | 82 | type=str, |
78 | ) | 83 | ) |
79 | parser.add_argument( | 84 | parser.add_argument( |
@@ -167,42 +172,63 @@ def save_args(basepath, args, extra={}): | |||
167 | json.dump(info, f, indent=4) | 172 | json.dump(info, f, indent=4) |
168 | 173 | ||
169 | 174 | ||
170 | def load_embeddings(tokenizer, text_encoder, embeddings_dir): | 175 | def load_embeddings_ti(tokenizer, text_encoder, embeddings_dir): |
176 | print(f"Loading Textual Inversion embeddings") | ||
177 | |||
171 | embeddings_dir = Path(embeddings_dir) | 178 | embeddings_dir = Path(embeddings_dir) |
172 | embeddings_dir.mkdir(parents=True, exist_ok=True) | 179 | embeddings_dir.mkdir(parents=True, exist_ok=True) |
173 | 180 | ||
174 | for file in embeddings_dir.iterdir(): | 181 | for file in embeddings_dir.iterdir(): |
175 | placeholder_token = file.stem | 182 | if file.is_file(): |
183 | placeholder_token = file.stem | ||
176 | 184 | ||
177 | num_added_tokens = tokenizer.add_tokens(placeholder_token) | 185 | num_added_tokens = tokenizer.add_tokens(placeholder_token) |
178 | if num_added_tokens == 0: | 186 | if num_added_tokens == 0: |
179 | raise ValueError( | 187 | raise ValueError( |
180 | f"The tokenizer already contains the token {placeholder_token}. Please pass a different" | 188 | f"The tokenizer already contains the token {placeholder_token}. Please pass a different" |
181 | " `placeholder_token` that is not already in the tokenizer." | 189 | " `placeholder_token` that is not already in the tokenizer." |
182 | ) | 190 | ) |
183 | 191 | ||
184 | text_encoder.resize_token_embeddings(len(tokenizer)) | 192 | text_encoder.resize_token_embeddings(len(tokenizer)) |
185 | 193 | ||
186 | token_embeds = text_encoder.get_input_embeddings().weight.data | 194 | token_embeds = text_encoder.get_input_embeddings().weight.data |
187 | 195 | ||
188 | for file in embeddings_dir.iterdir(): | 196 | for file in embeddings_dir.iterdir(): |
189 | placeholder_token = file.stem | 197 | if file.is_file(): |
190 | placeholder_token_id = tokenizer.convert_tokens_to_ids(placeholder_token) | 198 | placeholder_token = file.stem |
199 | placeholder_token_id = tokenizer.convert_tokens_to_ids(placeholder_token) | ||
200 | |||
201 | data = torch.load(file, map_location="cpu") | ||
202 | |||
203 | assert len(data.keys()) == 1, 'embedding file has multiple terms in it' | ||
204 | |||
205 | emb = next(iter(data.values())) | ||
206 | if len(emb.shape) == 1: | ||
207 | emb = emb.unsqueeze(0) | ||
191 | 208 | ||
192 | data = torch.load(file, map_location="cpu") | 209 | token_embeds[placeholder_token_id] = emb |
193 | 210 | ||
194 | assert len(data.keys()) == 1, 'embedding file has multiple terms in it' | 211 | print(f"Loaded {placeholder_token}") |
195 | 212 | ||
196 | emb = next(iter(data.values())) | ||
197 | if len(emb.shape) == 1: | ||
198 | emb = emb.unsqueeze(0) | ||
199 | 213 | ||
200 | token_embeds[placeholder_token_id] = emb | 214 | def load_embeddings_ag(pipeline, embeddings_dir): |
215 | print(f"Loading Aesthetic Gradient embeddings") | ||
201 | 216 | ||
202 | print(f"Loaded embedding: {placeholder_token}") | 217 | embeddings_dir = Path(embeddings_dir) |
218 | embeddings_dir.mkdir(parents=True, exist_ok=True) | ||
219 | |||
220 | for file in embeddings_dir.iterdir(): | ||
221 | if file.is_file(): | ||
222 | placeholder_token = file.stem | ||
203 | 223 | ||
224 | data = torch.load(file, map_location="cpu") | ||
204 | 225 | ||
205 | def create_pipeline(model, scheduler, embeddings_dir, dtype): | 226 | pipeline.add_aesthetic_gradient_embedding(placeholder_token, data) |
227 | |||
228 | print(f"Loaded {placeholder_token}") | ||
229 | |||
230 | |||
231 | def create_pipeline(model, scheduler, ti_embeddings_dir, ag_embeddings_dir, dtype): | ||
206 | print("Loading Stable Diffusion pipeline...") | 232 | print("Loading Stable Diffusion pipeline...") |
207 | 233 | ||
208 | tokenizer = CLIPTokenizer.from_pretrained(model, subfolder='tokenizer', torch_dtype=dtype) | 234 | tokenizer = CLIPTokenizer.from_pretrained(model, subfolder='tokenizer', torch_dtype=dtype) |
@@ -210,7 +236,7 @@ def create_pipeline(model, scheduler, embeddings_dir, dtype): | |||
210 | vae = AutoencoderKL.from_pretrained(model, subfolder='vae', torch_dtype=dtype) | 236 | vae = AutoencoderKL.from_pretrained(model, subfolder='vae', torch_dtype=dtype) |
211 | unet = UNet2DConditionModel.from_pretrained(model, subfolder='unet', torch_dtype=dtype) | 237 | unet = UNet2DConditionModel.from_pretrained(model, subfolder='unet', torch_dtype=dtype) |
212 | 238 | ||
213 | load_embeddings(tokenizer, text_encoder, embeddings_dir) | 239 | load_embeddings_ti(tokenizer, text_encoder, ti_embeddings_dir) |
214 | 240 | ||
215 | if scheduler == "plms": | 241 | if scheduler == "plms": |
216 | scheduler = PNDMScheduler( | 242 | scheduler = PNDMScheduler( |
@@ -236,10 +262,13 @@ def create_pipeline(model, scheduler, embeddings_dir, dtype): | |||
236 | tokenizer=tokenizer, | 262 | tokenizer=tokenizer, |
237 | scheduler=scheduler, | 263 | scheduler=scheduler, |
238 | ) | 264 | ) |
265 | pipeline.aesthetic_gradient_iters = 30 | ||
239 | pipeline.to("cuda") | 266 | pipeline.to("cuda") |
240 | 267 | ||
241 | print("Pipeline loaded.") | 268 | print("Pipeline loaded.") |
242 | 269 | ||
270 | load_embeddings_ag(pipeline, ag_embeddings_dir) | ||
271 | |||
243 | return pipeline | 272 | return pipeline |
244 | 273 | ||
245 | 274 | ||
@@ -259,7 +288,7 @@ def generate(output_dir, pipeline, args): | |||
259 | else: | 288 | else: |
260 | init_image = None | 289 | init_image = None |
261 | 290 | ||
262 | with torch.autocast("cuda"), torch.inference_mode(): | 291 | with torch.autocast("cuda"): |
263 | for i in range(args.batch_num): | 292 | for i in range(args.batch_num): |
264 | pipeline.set_progress_bar_config( | 293 | pipeline.set_progress_bar_config( |
265 | desc=f"Batch {i + 1} of {args.batch_num}", | 294 | desc=f"Batch {i + 1} of {args.batch_num}", |
@@ -337,7 +366,7 @@ def main(): | |||
337 | output_dir = Path(args.output_dir) | 366 | output_dir = Path(args.output_dir) |
338 | dtype = {"fp32": torch.float32, "fp16": torch.float16, "bf16": torch.bfloat16}[args.precision] | 367 | dtype = {"fp32": torch.float32, "fp16": torch.float16, "bf16": torch.bfloat16}[args.precision] |
339 | 368 | ||
340 | pipeline = create_pipeline(args.model, args.scheduler, args.embeddings_dir, dtype) | 369 | pipeline = create_pipeline(args.model, args.scheduler, args.ti_embeddings_dir, args.ag_embeddings_dir, dtype) |
341 | cmd_parser = create_cmd_parser() | 370 | cmd_parser = create_cmd_parser() |
342 | cmd_prompt = CmdParse(output_dir, pipeline, cmd_parser) | 371 | cmd_prompt = CmdParse(output_dir, pipeline, cmd_parser) |
343 | cmd_prompt.cmdloop() | 372 | cmd_prompt.cmdloop() |