diff options
Diffstat (limited to 'models/attention/hook.py')
| -rw-r--r-- | models/attention/hook.py | 63 |
1 files changed, 0 insertions, 63 deletions
diff --git a/models/attention/hook.py b/models/attention/hook.py deleted file mode 100644 index 6b5fb68..0000000 --- a/models/attention/hook.py +++ /dev/null | |||
| @@ -1,63 +0,0 @@ | |||
| 1 | import torch | ||
| 2 | |||
| 3 | |||
| 4 | try: | ||
| 5 | import xformers.ops | ||
| 6 | |||
| 7 | xformers._is_functorch_available = True | ||
| 8 | MEM_EFFICIENT_ATTN = True | ||
| 9 | except ImportError: | ||
| 10 | print("[!] Not using xformers memory efficient attention.") | ||
| 11 | MEM_EFFICIENT_ATTN = False | ||
| 12 | |||
| 13 | |||
| 14 | def register_attention_control(model, controller): | ||
| 15 | def ca_forward(self, place_in_unet): | ||
| 16 | def forward(x, context=None, mask=None): | ||
| 17 | batch_size, sequence_length, dim = x.shape | ||
| 18 | h = self.heads | ||
| 19 | q = self.to_q(x) | ||
| 20 | is_cross = context is not None | ||
| 21 | context = context if is_cross else x | ||
| 22 | k = self.to_k(context) | ||
| 23 | v = self.to_v(context) | ||
| 24 | q = self.reshape_heads_to_batch_dim(q) | ||
| 25 | k = self.reshape_heads_to_batch_dim(k) | ||
| 26 | v = self.reshape_heads_to_batch_dim(v) | ||
| 27 | |||
| 28 | sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale | ||
| 29 | |||
| 30 | if mask is not None: | ||
| 31 | mask = mask.reshape(batch_size, -1) | ||
| 32 | max_neg_value = -torch.finfo(sim.dtype).max | ||
| 33 | mask = mask[:, None, :].repeat(h, 1, 1) | ||
| 34 | sim.masked_fill_(~mask, max_neg_value) | ||
| 35 | |||
| 36 | # attention, what we cannot get enough of | ||
| 37 | attn = sim.softmax(dim=-1) | ||
| 38 | attn = controller(attn, is_cross, place_in_unet) | ||
| 39 | out = torch.einsum("b i j, b j d -> b i d", attn, v) | ||
| 40 | out = self.reshape_batch_dim_to_heads(out) | ||
| 41 | return self.to_out(out) | ||
| 42 | |||
| 43 | return forward | ||
| 44 | |||
| 45 | def register_recr(net_, count, place_in_unet): | ||
| 46 | if net_.__class__.__name__ == "CrossAttention": | ||
| 47 | net_.forward = ca_forward(net_, place_in_unet) | ||
| 48 | return count + 1 | ||
| 49 | elif hasattr(net_, "children"): | ||
| 50 | for net__ in net_.children(): | ||
| 51 | count = register_recr(net__, count, place_in_unet) | ||
| 52 | return count | ||
| 53 | |||
| 54 | cross_att_count = 0 | ||
| 55 | sub_nets = model.unet.named_children() | ||
| 56 | for net in sub_nets: | ||
| 57 | if "down" in net[0]: | ||
| 58 | cross_att_count += register_recr(net[1], 0, "down") | ||
| 59 | elif "up" in net[0]: | ||
| 60 | cross_att_count += register_recr(net[1], 0, "up") | ||
| 61 | elif "mid" in net[0]: | ||
| 62 | cross_att_count += register_recr(net[1], 0, "mid") | ||
| 63 | controller.num_att_layers = cross_att_count | ||
