diff options
Diffstat (limited to 'models')
| -rw-r--r-- | models/clip/embeddings.py | 3 | ||||
| -rw-r--r-- | models/lora.py | 59 |
2 files changed, 38 insertions, 24 deletions
diff --git a/models/clip/embeddings.py b/models/clip/embeddings.py index 840f8ae..4444cf9 100644 --- a/models/clip/embeddings.py +++ b/models/clip/embeddings.py | |||
| @@ -74,8 +74,7 @@ class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings): | |||
| 74 | save_file({"embed": self.get_embed(input_ids)}, filename) | 74 | save_file({"embed": self.get_embed(input_ids)}, filename) |
| 75 | 75 | ||
| 76 | def persist(self): | 76 | def persist(self): |
| 77 | self.token_embedding.eval() | 77 | self.token_embedding.persist() |
| 78 | self.token_embedding.merged = False | ||
| 79 | 78 | ||
| 80 | def get_embed(self, input_ids: Union[list[int], torch.LongTensor]): | 79 | def get_embed(self, input_ids: Union[list[int], torch.LongTensor]): |
| 81 | if isinstance(input_ids, list): | 80 | if isinstance(input_ids, list): |
diff --git a/models/lora.py b/models/lora.py index 89c4b2e..b7fa58f 100644 --- a/models/lora.py +++ b/models/lora.py | |||
| @@ -46,8 +46,8 @@ class LoraEmbedding(nn.Embedding, LoraLayer): | |||
| 46 | self.trainable_ids -= 1 | 46 | self.trainable_ids -= 1 |
| 47 | 47 | ||
| 48 | if r > 0: | 48 | if r > 0: |
| 49 | self.lora_A = nn.Parameter(self.weight.new_zeros((r, 0))) | 49 | self.lora_A = nn.ParameterList() |
| 50 | self.lora_B = nn.Parameter(self.weight.new_zeros((embedding_dim, r))) | 50 | self.lora_B = nn.Linear(r, embedding_dim, bias=False) |
| 51 | self.scaling = self.lora_alpha / self.r | 51 | self.scaling = self.lora_alpha / self.r |
| 52 | self.weight.requires_grad = False | 52 | self.weight.requires_grad = False |
| 53 | 53 | ||
| @@ -83,49 +83,64 @@ class LoraEmbedding(nn.Embedding, LoraLayer): | |||
| 83 | if new_ids.shape[0] == 0: | 83 | if new_ids.shape[0] == 0: |
| 84 | return | 84 | return |
| 85 | 85 | ||
| 86 | n1 = self.lora_A.shape[1] | 86 | n1 = len(self.lora_A) |
| 87 | n2 = n1 + new_ids.shape[0] | 87 | n2 = n1 + new_ids.shape[0] |
| 88 | self.trainable_ids[new_ids] = torch.arange(n1, n2) | 88 | self.trainable_ids[new_ids] = torch.arange(n1, n2) |
| 89 | for _ in new_ids: | ||
| 90 | self.lora_A.append(self.weight.new_zeros(self.r)) | ||
| 89 | 91 | ||
| 90 | lora_A = nn.Parameter(self.weight.new_zeros((self.r, n2))) | 92 | def persist(self): |
| 91 | self.lora_A = lora_A | 93 | if self.r > 0: |
| 94 | weights, mask = self.get_weights(torch.arange(self.trainable_ids.shape[0])) | ||
| 95 | if weights is not None: | ||
| 96 | self.weight[mask].data += weights | ||
| 97 | self.trainable_ids[:] = -1 | ||
| 98 | self.lora_A = nn.ParameterList() | ||
| 99 | |||
| 100 | def get_weights(self, input_ids: torch.Tensor): | ||
| 101 | trainable_ids = self.trainable_ids[input_ids] | ||
| 102 | mask = ~(trainable_ids == -1) | ||
| 103 | trainable_ids = trainable_ids[mask] | ||
| 104 | |||
| 105 | elems = [self.lora_A[id] for id in trainable_ids] | ||
| 106 | |||
| 107 | if len(elems) == 0: | ||
| 108 | return None, mask | ||
| 109 | |||
| 110 | weights = self.lora_B(self.lora_dropout(torch.stack(elems))) * self.scaling | ||
| 111 | |||
| 112 | return weights, mask | ||
| 92 | 113 | ||
| 93 | def reset_parameters(self): | 114 | def reset_parameters(self): |
| 94 | nn.Embedding.reset_parameters(self) | 115 | nn.Embedding.reset_parameters(self) |
| 95 | if hasattr(self, 'lora_A'): | 116 | if hasattr(self, 'lora_A'): |
| 96 | nn.init.zeros_(self.lora_A) | 117 | self.lora_A = nn.ParameterList() |
| 97 | nn.init.normal_(self.lora_B) | 118 | nn.init.zeros_(self.lora_B.weight) |
| 98 | 119 | ||
| 99 | def train(self, mode: bool = True): | 120 | def train(self, mode: bool = True): |
| 100 | nn.Embedding.train(self, mode) | 121 | nn.Embedding.train(self, mode) |
| 101 | if self.merge_weights and self.merged: | 122 | if self.merge_weights and self.merged: |
| 102 | if self.r > 0: | 123 | if self.r > 0: |
| 103 | mask = ~(self.trainable_ids == -1) | 124 | weights, mask = self.get_weights(torch.arange(self.trainable_ids.shape[0])) |
| 104 | trainable_ids = self.trainable_ids[mask] | 125 | if weights is not None: |
| 105 | self.weight[trainable_ids].data -= (self.lora_B @ self.lora_A).T * self.scaling | 126 | self.weight[mask].data -= weights |
| 106 | self.merged = False | 127 | self.merged = False |
| 107 | 128 | ||
| 108 | def eval(self): | 129 | def eval(self): |
| 109 | nn.Embedding.eval(self) | 130 | nn.Embedding.eval(self) |
| 110 | if self.merge_weights and not self.merged: | 131 | if self.merge_weights and not self.merged: |
| 111 | if self.r > 0: | 132 | if self.r > 0: |
| 112 | mask = ~(self.trainable_ids == -1) | 133 | weights, mask = self.get_weights(torch.arange(self.trainable_ids.shape[0])) |
| 113 | trainable_ids = self.trainable_ids[mask] | 134 | if weights is not None: |
| 114 | self.weight[trainable_ids].data += (self.lora_B @ self.lora_A) * self.scaling | 135 | self.weight[mask].data += weights |
| 115 | self.merged = True | 136 | self.merged = True |
| 116 | 137 | ||
| 117 | def forward(self, input_ids: torch.Tensor): | 138 | def forward(self, input_ids: torch.Tensor): |
| 118 | result = nn.Embedding.forward(self, input_ids) | 139 | result = nn.Embedding.forward(self, input_ids) |
| 119 | 140 | ||
| 120 | if self.r > 0 and not self.merged: | 141 | if self.r > 0 and not self.merged: |
| 121 | trainable_ids = self.trainable_ids[input_ids] | 142 | weights, mask = self.get_weights(input_ids) |
| 122 | mask = ~(trainable_ids == -1) | 143 | if weights is not None: |
| 123 | trainable_ids = trainable_ids[mask] | 144 | result[mask] += weights |
| 124 | |||
| 125 | after_A = F.embedding( | ||
| 126 | trainable_ids, self.lora_A.T, self.padding_idx, self.max_norm, | ||
| 127 | self.norm_type, self.scale_grad_by_freq, self.sparse | ||
| 128 | ) | ||
| 129 | result[mask] += (after_A @ self.lora_B.T) * self.scaling | ||
| 130 | 145 | ||
| 131 | return result | 146 | return result |
