diff options
Diffstat (limited to 'models')
| -rw-r--r-- | models/clip/embeddings.py | 76 | ||||
| -rw-r--r-- | models/lora.py | 131 | ||||
| -rw-r--r-- | models/sparse.py | 66 | 
3 files changed, 157 insertions, 116 deletions
| diff --git a/models/clip/embeddings.py b/models/clip/embeddings.py index 9be8256..60c1b20 100644 --- a/models/clip/embeddings.py +++ b/models/clip/embeddings.py | |||
| @@ -11,49 +11,27 @@ from transformers import CLIPTextModel | |||
| 11 | from transformers.models.clip import CLIPTextConfig | 11 | from transformers.models.clip import CLIPTextConfig | 
| 12 | from transformers.models.clip.modeling_clip import CLIPTextEmbeddings | 12 | from transformers.models.clip.modeling_clip import CLIPTextEmbeddings | 
| 13 | 13 | ||
| 14 | from models.sparse import PseudoSparseEmbedding | 14 | from models.lora import LoraEmbedding | 
| 15 | |||
| 16 | |||
| 17 | def resize_embedding(old_embedding: nn.Embedding, new_num_embeddings: int, initializer_factor: Optional[float] = None) -> nn.Embedding: | ||
| 18 | old_num_embeddings, old_embedding_dim = old_embedding.weight.shape | ||
| 19 | |||
| 20 | if old_num_embeddings == new_num_embeddings: | ||
| 21 | return old_embedding | ||
| 22 | |||
| 23 | n = min(old_num_embeddings, new_num_embeddings) | ||
| 24 | |||
| 25 | new_embedding = nn.Embedding( | ||
| 26 | new_num_embeddings, | ||
| 27 | old_embedding_dim, | ||
| 28 | device=old_embedding.weight.device, | ||
| 29 | dtype=old_embedding.weight.dtype | ||
| 30 | ) | ||
| 31 | if initializer_factor is not None: | ||
| 32 | new_embedding.weight.data.normal_(mean=0.0, std=initializer_factor * 0.02) | ||
| 33 | else: | ||
| 34 | nn.init.zeros_(new_embedding.weight.data) | ||
| 35 | new_embedding.weight.data[:n, :] = old_embedding.weight.data[:n, :] | ||
| 36 | return new_embedding | ||
| 37 | 15 | ||
| 38 | 16 | ||
| 39 | class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings): | 17 | class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings): | 
| 40 | def __init__(self, config: CLIPTextConfig, embeddings: CLIPTextEmbeddings, dropout_p: float = 0.0): | 18 | def __init__(self, config: CLIPTextConfig, embeddings: CLIPTextEmbeddings, r: int = 8, lora_alpha: int = 8, lora_dropout: float = 0.0): | 
| 41 | super().__init__(config) | 19 | super().__init__(config) | 
| 42 | 20 | ||
| 43 | self.token_embedding = embeddings.token_embedding | ||
| 44 | self.position_embedding = embeddings.position_embedding | 21 | self.position_embedding = embeddings.position_embedding | 
| 45 | self.initializer_factor = config.initializer_factor | 22 | self.initializer_factor = config.initializer_factor | 
| 46 | 23 | self.token_embedding = LoraEmbedding( | |
| 47 | self.token_override_embedding = PseudoSparseEmbedding( | 24 | self.token_embedding.num_embeddings, | 
| 48 | self.token_embedding.embedding_dim, | 25 | self.token_embedding.embedding_dim, | 
| 49 | dropout_p=dropout_p, | 26 | r, | 
| 50 | device=self.token_embedding.weight.device, | 27 | lora_alpha, | 
| 51 | dtype=self.token_embedding.weight.dtype, | 28 | lora_dropout, | 
| 52 | ) | 29 | ) | 
| 53 | 30 | ||
| 31 | self.token_embedding.weight = embeddings.token_embedding.weight | ||
| 32 | |||
| 54 | def resize(self, size: int): | 33 | def resize(self, size: int): | 
| 55 | self.token_override_embedding.resize(size) | 34 | self.token_embedding = self.token_embedding.new_resized(size, self.initializer_factor) | 
| 56 | self.token_embedding = resize_embedding(self.token_embedding, size, self.initializer_factor) | ||
| 57 | 35 | ||
| 58 | def add_embed( | 36 | def add_embed( | 
| 59 | self, | 37 | self, | 
| @@ -87,7 +65,6 @@ class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings): | |||
| 87 | token_ids = torch.tensor(token_ids, dtype=torch.long) | 65 | token_ids = torch.tensor(token_ids, dtype=torch.long) | 
| 88 | 66 | ||
| 89 | self.token_embedding.weight.data[token_ids] = initializer | 67 | self.token_embedding.weight.data[token_ids] = initializer | 
| 90 | self.token_override_embedding.set(token_ids, initializer) | ||
| 91 | 68 | ||
| 92 | def load_embed(self, input_ids: list[int], filename: Path): | 69 | def load_embed(self, input_ids: list[int], filename: Path): | 
| 93 | with safe_open(filename, framework="pt", device="cpu") as file: | 70 | with safe_open(filename, framework="pt", device="cpu") as file: | 
| @@ -97,26 +74,14 @@ class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings): | |||
| 97 | save_file({"embed": self.get_embed(input_ids)}, filename) | 74 | save_file({"embed": self.get_embed(input_ids)}, filename) | 
| 98 | 75 | ||
| 99 | def persist(self): | 76 | def persist(self): | 
| 100 | input_ids = torch.arange( | 77 | self.token_embedding.eval() | 
| 101 | self.token_embedding.num_embeddings, | 78 | self.token_embedding.merged = False | 
| 102 | device=self.token_override_embedding.mapping.device | ||
| 103 | ) | ||
| 104 | embs, mask = self.token_override_embedding(input_ids) | ||
| 105 | if embs is not None: | ||
| 106 | input_ids = input_ids[mask] | ||
| 107 | self.token_embedding.weight.data[input_ids] = embs | ||
| 108 | self.token_override_embedding.unset(input_ids) | ||
| 109 | 79 | ||
| 110 | def get_embed(self, input_ids: Union[list[int], torch.LongTensor]): | 80 | def get_embed(self, input_ids: Union[list[int], torch.LongTensor]): | 
| 111 | if isinstance(input_ids, list): | 81 | if isinstance(input_ids, list): | 
| 112 | input_ids = torch.tensor(input_ids, device=self.token_embedding.weight.device, dtype=torch.long) | 82 | input_ids = torch.tensor(input_ids, device=self.token_embedding.weight.device, dtype=torch.long) | 
| 113 | 83 | ||
| 114 | embs = self.token_embedding(input_ids) | 84 | return self.token_embedding(input_ids) | 
| 115 | embs_override, mask = self.token_override_embedding(input_ids) | ||
| 116 | if embs_override is not None: | ||
| 117 | embs[mask] = embs_override | ||
| 118 | |||
| 119 | return embs | ||
| 120 | 85 | ||
| 121 | def forward( | 86 | def forward( | 
| 122 | self, | 87 | self, | 
| @@ -138,7 +103,18 @@ class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings): | |||
| 138 | return embeddings | 103 | return embeddings | 
| 139 | 104 | ||
| 140 | 105 | ||
| 141 | def patch_managed_embeddings(text_encoder: CLIPTextModel, dropout_p: float = 0.0) -> ManagedCLIPTextEmbeddings: | 106 | def patch_managed_embeddings( | 
| 142 | text_embeddings = ManagedCLIPTextEmbeddings(text_encoder.config, text_encoder.text_model.embeddings, dropout_p) | 107 | text_encoder: CLIPTextModel, | 
| 108 | r: int = 8, | ||
| 109 | lora_alpha: int = 8, | ||
| 110 | lora_dropout: float = 0.0 | ||
| 111 | ) -> ManagedCLIPTextEmbeddings: | ||
| 112 | text_embeddings = ManagedCLIPTextEmbeddings( | ||
| 113 | text_encoder.config, | ||
| 114 | text_encoder.text_model.embeddings, | ||
| 115 | r, | ||
| 116 | lora_alpha, | ||
| 117 | lora_dropout | ||
| 118 | ) | ||
| 143 | text_encoder.text_model.embeddings = text_embeddings | 119 | text_encoder.text_model.embeddings = text_embeddings | 
| 144 | return text_embeddings | 120 | return text_embeddings | 
| diff --git a/models/lora.py b/models/lora.py new file mode 100644 index 0000000..c0f74a6 --- /dev/null +++ b/models/lora.py | |||
| @@ -0,0 +1,131 @@ | |||
| 1 | from typing import Optional | ||
| 2 | |||
| 3 | import torch | ||
| 4 | import torch.nn as nn | ||
| 5 | import torch.nn.functional as F | ||
| 6 | |||
| 7 | |||
| 8 | class LoraLayer(): | ||
| 9 | def __init__( | ||
| 10 | self, | ||
| 11 | r: int, | ||
| 12 | lora_alpha: int, | ||
| 13 | lora_dropout: float, | ||
| 14 | merge_weights: bool, | ||
| 15 | ): | ||
| 16 | self.r = r | ||
| 17 | self.lora_alpha = lora_alpha | ||
| 18 | self.lora_dropout_p = lora_dropout | ||
| 19 | |||
| 20 | if lora_dropout > 0.: | ||
| 21 | self.lora_dropout = nn.Dropout(p=lora_dropout) | ||
| 22 | else: | ||
| 23 | self.lora_dropout = nn.Identity() | ||
| 24 | |||
| 25 | self.merged = False | ||
| 26 | self.merge_weights = merge_weights | ||
| 27 | |||
| 28 | |||
| 29 | class LoraEmbedding(nn.Embedding, LoraLayer): | ||
| 30 | def __init__( | ||
| 31 | self, | ||
| 32 | num_embeddings: int, | ||
| 33 | embedding_dim: int, | ||
| 34 | r: int = 0, | ||
| 35 | lora_alpha: int = 1, | ||
| 36 | lora_dropout: float = 0.0, | ||
| 37 | merge_weights: bool = True, | ||
| 38 | **kwargs | ||
| 39 | ): | ||
| 40 | nn.Embedding.__init__(self, num_embeddings, embedding_dim, **kwargs) | ||
| 41 | LoraLayer.__init__( | ||
| 42 | self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, merge_weights=merge_weights | ||
| 43 | ) | ||
| 44 | |||
| 45 | self.register_buffer('trainable_ids', torch.zeros(num_embeddings, device=self.weight.device, dtype=torch.long)) | ||
| 46 | self.trainable_ids -= 1 | ||
| 47 | |||
| 48 | if r > 0: | ||
| 49 | self.lora_A = nn.Parameter(self.weight.new_zeros((r, 0))) | ||
| 50 | self.lora_B = nn.Parameter(self.weight.new_zeros((embedding_dim, r))) | ||
| 51 | self.scaling = self.lora_alpha / self.r | ||
| 52 | self.weight.requires_grad = False | ||
| 53 | |||
| 54 | self.reset_parameters() | ||
| 55 | |||
| 56 | def new_resized(self, new_num_embeddings: int, initializer_factor: Optional[float] = None): | ||
| 57 | n = min(self.num_embeddings, new_num_embeddings) | ||
| 58 | |||
| 59 | new_emb = LoraEmbedding( | ||
| 60 | new_num_embeddings, | ||
| 61 | self.embedding_dim, | ||
| 62 | self.r, | ||
| 63 | self.lora_alpha, | ||
| 64 | self.lora_dropout_p, | ||
| 65 | device=self.weight.device, | ||
| 66 | dtype=self.weight.dtype | ||
| 67 | ) | ||
| 68 | if initializer_factor is not None: | ||
| 69 | new_emb.weight.data.normal_(mean=0.0, std=initializer_factor * 0.02) | ||
| 70 | else: | ||
| 71 | nn.init.zeros_(new_emb.weight.data) | ||
| 72 | new_emb.weight.data[:n, :] = self.weight.data[:n, :] | ||
| 73 | new_emb.lora_A = self.lora_A | ||
| 74 | new_emb.lora_B = self.lora_B | ||
| 75 | new_emb.trainable_ids[:n] = self.trainable_ids[:n] | ||
| 76 | |||
| 77 | return new_emb | ||
| 78 | |||
| 79 | def mark_trainable(self, input_ids): | ||
| 80 | trainable_ids = self.trainable_ids[input_ids] | ||
| 81 | new_ids = trainable_ids[trainable_ids == -1] | ||
| 82 | |||
| 83 | if new_ids.shape[0] == 0: | ||
| 84 | return | ||
| 85 | |||
| 86 | n = self.trainable_ids.shape[0] | ||
| 87 | self.trainable_ids[new_ids] = torch.arange(n, n + new_ids.shape[0]) | ||
| 88 | |||
| 89 | lora_A = nn.Parameter(self.weight.new_zeros((self.trainable_ids.shape[0], 0))) | ||
| 90 | lora_A.data[:n] = self.lora_A.data | ||
| 91 | self.lora_A = lora_A | ||
| 92 | |||
| 93 | def reset_parameters(self): | ||
| 94 | nn.Embedding.reset_parameters(self) | ||
| 95 | if hasattr(self, 'lora_A'): | ||
| 96 | nn.init.zeros_(self.lora_A) | ||
| 97 | nn.init.normal_(self.lora_B) | ||
| 98 | |||
| 99 | def train(self, mode: bool = True): | ||
| 100 | nn.Embedding.train(self, mode) | ||
| 101 | if self.merge_weights and self.merged: | ||
| 102 | if self.r > 0: | ||
| 103 | mask = ~(self.trainable_ids == -1) | ||
| 104 | trainable_ids = self.trainable_ids[mask] | ||
| 105 | self.weight[trainable_ids].data -= (self.lora_B @ self.lora_A).T * self.scaling | ||
| 106 | self.merged = False | ||
| 107 | |||
| 108 | def eval(self): | ||
| 109 | nn.Embedding.eval(self) | ||
| 110 | if self.merge_weights and not self.merged: | ||
| 111 | if self.r > 0: | ||
| 112 | mask = ~(self.trainable_ids == -1) | ||
| 113 | trainable_ids = self.trainable_ids[mask] | ||
| 114 | self.weight[trainable_ids].data += (self.lora_B @ self.lora_A) * self.scaling | ||
| 115 | self.merged = True | ||
| 116 | |||
| 117 | def forward(self, input_ids: torch.Tensor): | ||
| 118 | result = nn.Embedding.forward(self, input_ids) | ||
| 119 | |||
| 120 | if self.r > 0 and not self.merged: | ||
| 121 | trainable_ids = self.trainable_ids[input_ids] | ||
| 122 | mask = ~(trainable_ids == -1) | ||
| 123 | trainable_ids = trainable_ids[mask] | ||
| 124 | |||
| 125 | after_A = F.embedding( | ||
| 126 | trainable_ids, self.lora_A.T, self.padding_idx, self.max_norm, | ||
| 127 | self.norm_type, self.scale_grad_by_freq, self.sparse | ||
| 128 | ) | ||
| 129 | result[mask] += (after_A @ self.lora_B.T) * self.scaling | ||
| 130 | |||
| 131 | return result | ||
| diff --git a/models/sparse.py b/models/sparse.py deleted file mode 100644 index 07b3413..0000000 --- a/models/sparse.py +++ /dev/null | |||
| @@ -1,66 +0,0 @@ | |||
| 1 | from typing import Optional | ||
| 2 | |||
| 3 | import torch | ||
| 4 | import torch.nn as nn | ||
| 5 | |||
| 6 | |||
| 7 | class PseudoSparseEmbedding(nn.Module): | ||
| 8 | def __init__(self, embedding_dim: int, dropout_p: float = 0.0, device=None, dtype=torch.float32): | ||
| 9 | super().__init__() | ||
| 10 | |||
| 11 | self.embedding_dim = embedding_dim | ||
| 12 | self.dtype = dtype | ||
| 13 | self.params = nn.ParameterList() | ||
| 14 | |||
| 15 | if dropout_p > 0.0: | ||
| 16 | self.dropout = nn.Dropout(p=dropout_p) | ||
| 17 | else: | ||
| 18 | self.dropout = nn.Identity() | ||
| 19 | |||
| 20 | self.register_buffer('mapping', torch.zeros(0, device=device, dtype=torch.long)) | ||
| 21 | |||
| 22 | def forward(self, input_ids: torch.LongTensor): | ||
| 23 | input_ids = input_ids.to(self.mapping.device) | ||
| 24 | ids = self.mapping[input_ids] | ||
| 25 | mask = ~(ids == -1) | ||
| 26 | |||
| 27 | if torch.all(~mask): | ||
| 28 | embs = None | ||
| 29 | else: | ||
| 30 | embs = self.dropout(torch.stack([self.params[id] for id in ids[mask]])) | ||
| 31 | |||
| 32 | return embs, mask | ||
| 33 | |||
| 34 | def resize(self, new_num_embeddings: int): | ||
| 35 | old_num_embeddings = self.mapping.shape[0] | ||
| 36 | n = min(old_num_embeddings, new_num_embeddings) | ||
| 37 | |||
| 38 | new_mapping = torch.zeros(new_num_embeddings, device=self.mapping.device, dtype=torch.long) - 1 | ||
| 39 | new_mapping[:n] = self.mapping[:n] | ||
| 40 | |||
| 41 | self.mapping = new_mapping | ||
| 42 | |||
| 43 | def set(self, input_ids: torch.LongTensor, tensor: Optional[torch.Tensor] = None): | ||
| 44 | if len(input_ids.shape) != 0: | ||
| 45 | if tensor is not None: | ||
| 46 | return [self.set(id, t) for id, t in zip(input_ids, tensor)] | ||
| 47 | else: | ||
| 48 | return [self.set(id) for id in input_ids] | ||
| 49 | |||
| 50 | if tensor is None: | ||
| 51 | tensor = torch.zeros(self.embedding_dim, device=self.mapping.device, dtype=self.dtype) | ||
| 52 | |||
| 53 | if tensor.shape[-1] != self.embedding_dim: | ||
| 54 | raise ValueError(f"Expected tensor of shape [..., {self.embedding_dim}], but got [..., {tensor.shape[-1]}]") | ||
| 55 | |||
| 56 | id = self.mapping[input_ids] | ||
| 57 | |||
| 58 | if id == -1: | ||
| 59 | id = len(self.params) | ||
| 60 | self.mapping[input_ids] = id | ||
| 61 | self.params.append(torch.zeros(self.embedding_dim, device=self.mapping.device, dtype=self.dtype)) | ||
| 62 | |||
| 63 | self.params[id] = tensor | ||
| 64 | |||
| 65 | def unset(self, input_ids: torch.LongTensor): | ||
| 66 | self.mapping[input_ids] = -1 | ||
