diff options
Diffstat (limited to 'pipelines')
-rw-r--r-- | pipelines/stable_diffusion/vlpn_stable_diffusion.py | 50 |
1 files changed, 4 insertions, 46 deletions
diff --git a/pipelines/stable_diffusion/vlpn_stable_diffusion.py b/pipelines/stable_diffusion/vlpn_stable_diffusion.py index 1a84c8d..3e41f86 100644 --- a/pipelines/stable_diffusion/vlpn_stable_diffusion.py +++ b/pipelines/stable_diffusion/vlpn_stable_diffusion.py | |||
@@ -51,10 +51,6 @@ class VlpnStableDiffusion(DiffusionPipeline): | |||
51 | new_config["steps_offset"] = 1 | 51 | new_config["steps_offset"] = 1 |
52 | scheduler._internal_dict = FrozenDict(new_config) | 52 | scheduler._internal_dict = FrozenDict(new_config) |
53 | 53 | ||
54 | self.aesthetic_gradient_embeddings = {} | ||
55 | self.aesthetic_gradient_lr = 1e-4 | ||
56 | self.aesthetic_gradient_iters = 10 | ||
57 | |||
58 | self.register_modules( | 54 | self.register_modules( |
59 | vae=vae, | 55 | vae=vae, |
60 | text_encoder=text_encoder, | 56 | text_encoder=text_encoder, |
@@ -63,46 +59,8 @@ class VlpnStableDiffusion(DiffusionPipeline): | |||
63 | scheduler=scheduler, | 59 | scheduler=scheduler, |
64 | ) | 60 | ) |
65 | 61 | ||
66 | def add_aesthetic_gradient_embedding(self, keyword: str, tensor: torch.IntTensor): | 62 | def get_text_embeddings(self, text_input_ids): |
67 | self.aesthetic_gradient_embeddings[keyword] = tensor | 63 | return self.text_encoder(text_input_ids)[0] |
68 | |||
69 | def get_text_embeddings(self, prompt, text_input_ids): | ||
70 | prompt = " ".join(prompt) | ||
71 | |||
72 | embeddings = [ | ||
73 | embedding | ||
74 | for key, embedding in self.aesthetic_gradient_embeddings.items() | ||
75 | if key in prompt | ||
76 | ] | ||
77 | |||
78 | if len(embeddings) != 0: | ||
79 | with torch.enable_grad(): | ||
80 | full_clip_model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14") | ||
81 | full_clip_model.to(self.device) | ||
82 | full_clip_model.text_model.train() | ||
83 | |||
84 | optimizer = optim.Adam(full_clip_model.text_model.parameters(), lr=self.aesthetic_gradient_lr) | ||
85 | |||
86 | for embs in embeddings: | ||
87 | embs = embs.clone().detach().to(self.device) | ||
88 | embs /= embs.norm(dim=-1, keepdim=True) | ||
89 | |||
90 | for i in range(self.aesthetic_gradient_iters): | ||
91 | text_embs = full_clip_model.get_text_features(text_input_ids) | ||
92 | text_embs /= text_embs.norm(dim=-1, keepdim=True) | ||
93 | sim = text_embs @ embs.T | ||
94 | loss = -sim | ||
95 | loss = loss.mean() | ||
96 | |||
97 | loss.backward() | ||
98 | optimizer.step() | ||
99 | optimizer.zero_grad() | ||
100 | |||
101 | full_clip_model.text_model.eval() | ||
102 | |||
103 | return full_clip_model.text_model(text_input_ids)[0] | ||
104 | else: | ||
105 | return self.text_encoder(text_input_ids)[0] | ||
106 | 64 | ||
107 | def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): | 65 | def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): |
108 | r""" | 66 | r""" |
@@ -241,7 +199,7 @@ class VlpnStableDiffusion(DiffusionPipeline): | |||
241 | ) | 199 | ) |
242 | print(f"Too many tokens: {removed_text}") | 200 | print(f"Too many tokens: {removed_text}") |
243 | text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] | 201 | text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] |
244 | text_embeddings = self.get_text_embeddings(prompt, text_input_ids.to(self.device)) | 202 | text_embeddings = self.get_text_embeddings(text_input_ids.to(self.device)) |
245 | 203 | ||
246 | # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | 204 | # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) |
247 | # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | 205 | # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` |
@@ -253,7 +211,7 @@ class VlpnStableDiffusion(DiffusionPipeline): | |||
253 | uncond_input = self.tokenizer( | 211 | uncond_input = self.tokenizer( |
254 | negative_prompt, padding="max_length", max_length=max_length, return_tensors="pt" | 212 | negative_prompt, padding="max_length", max_length=max_length, return_tensors="pt" |
255 | ) | 213 | ) |
256 | uncond_embeddings = self.get_text_embeddings(negative_prompt, uncond_input.input_ids.to(self.device)) | 214 | uncond_embeddings = self.get_text_embeddings(uncond_input.input_ids.to(self.device)) |
257 | 215 | ||
258 | # For classifier free guidance, we need to do two forward passes. | 216 | # For classifier free guidance, we need to do two forward passes. |
259 | # Here we concatenate the unconditional and text embeddings into a single batch | 217 | # Here we concatenate the unconditional and text embeddings into a single batch |