diff options
Diffstat (limited to 'schedulers/scheduling_euler_ancestral_discrete.py')
| -rw-r--r-- | schedulers/scheduling_euler_ancestral_discrete.py | 192 |
1 files changed, 192 insertions, 0 deletions
diff --git a/schedulers/scheduling_euler_ancestral_discrete.py b/schedulers/scheduling_euler_ancestral_discrete.py new file mode 100644 index 0000000..3a2de68 --- /dev/null +++ b/schedulers/scheduling_euler_ancestral_discrete.py | |||
| @@ -0,0 +1,192 @@ | |||
| 1 | # Copyright 2022 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved. | ||
| 2 | # | ||
| 3 | # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| 4 | # you may not use this file except in compliance with the License. | ||
| 5 | # You may obtain a copy of the License at | ||
| 6 | # | ||
| 7 | # http://www.apache.org/licenses/LICENSE-2.0 | ||
| 8 | # | ||
| 9 | # Unless required by applicable law or agreed to in writing, software | ||
| 10 | # distributed under the License is distributed on an "AS IS" BASIS, | ||
| 11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| 12 | # See the License for the specific language governing permissions and | ||
| 13 | # limitations under the License. | ||
| 14 | |||
| 15 | from typing import Optional, Tuple, Union | ||
| 16 | |||
| 17 | import numpy as np | ||
| 18 | import torch | ||
| 19 | |||
| 20 | from diffusers.configuration_utils import ConfigMixin, register_to_config | ||
| 21 | from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput | ||
| 22 | |||
| 23 | |||
| 24 | class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin): | ||
| 25 | """ | ||
| 26 | Ancestral sampling with Euler method steps. | ||
| 27 | for discrete beta schedules. Based on the original k-diffusion implementation by | ||
| 28 | Katherine Crowson: | ||
| 29 | https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L72 | ||
| 30 | |||
| 31 | [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` | ||
| 32 | function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. | ||
| 33 | [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and | ||
| 34 | [`~ConfigMixin.from_config`] functions. | ||
| 35 | |||
| 36 | Args: | ||
| 37 | num_train_timesteps (`int`): number of diffusion steps used to train the model. | ||
| 38 | beta_start (`float`): the starting `beta` value of inference. | ||
| 39 | beta_end (`float`): the final `beta` value. | ||
| 40 | beta_schedule (`str`): | ||
| 41 | the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from | ||
| 42 | `linear` or `scaled_linear`. | ||
| 43 | trained_betas (`np.ndarray`, optional): | ||
| 44 | option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. | ||
| 45 | options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`, | ||
| 46 | `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`. | ||
| 47 | tensor_format (`str`): whether the scheduler expects pytorch or numpy arrays. | ||
| 48 | |||
| 49 | """ | ||
| 50 | |||
| 51 | @register_to_config | ||
| 52 | def __init__( | ||
| 53 | self, | ||
| 54 | num_train_timesteps: int = 1000, | ||
| 55 | beta_start: float = 0.00085, # sensible defaults | ||
| 56 | beta_end: float = 0.012, | ||
| 57 | beta_schedule: str = "linear", | ||
| 58 | trained_betas: Optional[np.ndarray] = None, | ||
| 59 | ): | ||
| 60 | if trained_betas is not None: | ||
| 61 | self.betas = torch.from_numpy(trained_betas) | ||
| 62 | elif beta_schedule == "linear": | ||
| 63 | self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) | ||
| 64 | elif beta_schedule == "scaled_linear": | ||
| 65 | # this schedule is very specific to the latent diffusion model. | ||
| 66 | self.betas = ( | ||
| 67 | torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 | ||
| 68 | ) | ||
| 69 | else: | ||
| 70 | raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") | ||
| 71 | |||
| 72 | self.alphas = 1.0 - self.betas | ||
| 73 | self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) | ||
| 74 | |||
| 75 | sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) | ||
| 76 | sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32) | ||
| 77 | self.sigmas = torch.from_numpy(sigmas) | ||
| 78 | |||
| 79 | self.init_noise_sigma = None | ||
| 80 | |||
| 81 | # setable values | ||
| 82 | self.num_inference_steps = None | ||
| 83 | timesteps = np.arange(0, num_train_timesteps)[::-1].copy() | ||
| 84 | self.timesteps = torch.from_numpy(timesteps) | ||
| 85 | self.derivatives = [] | ||
| 86 | self.is_scale_input_called = False | ||
| 87 | |||
| 88 | def scale_model_input( | ||
| 89 | self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor], step_index: Union[int, torch.IntTensor] | ||
| 90 | ) -> torch.FloatTensor: | ||
| 91 | """ | ||
| 92 | Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the K-LMS algorithm. | ||
| 93 | |||
| 94 | Args: | ||
| 95 | sample (`torch.FloatTensor`): input sample | ||
| 96 | timestep (`float` or `torch.FloatTensor`): the current timestep in the diffusion chain | ||
| 97 | |||
| 98 | Returns: | ||
| 99 | `torch.FloatTensor`: scaled input sample | ||
| 100 | """ | ||
| 101 | sigma = self.sigmas[step_index] | ||
| 102 | sample = sample / ((sigma**2 + 1) ** 0.5) | ||
| 103 | return sample | ||
| 104 | |||
| 105 | def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): | ||
| 106 | """ | ||
| 107 | Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. | ||
| 108 | |||
| 109 | Args: | ||
| 110 | num_inference_steps (`int`): | ||
| 111 | the number of diffusion steps used when generating samples with a pre-trained model. | ||
| 112 | """ | ||
| 113 | self.num_inference_steps = num_inference_steps | ||
| 114 | self.timesteps = np.linspace(self.num_train_timesteps - 1, 0, num_inference_steps, dtype=float) | ||
| 115 | |||
| 116 | low_idx = np.floor(self.timesteps).astype(int) | ||
| 117 | high_idx = np.ceil(self.timesteps).astype(int) | ||
| 118 | frac = np.mod(self.timesteps, 1.0) | ||
| 119 | sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) | ||
| 120 | sigmas = (1 - frac) * sigmas[low_idx] + frac * sigmas[high_idx] | ||
| 121 | sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) | ||
| 122 | self.sigmas = torch.from_numpy(sigmas) | ||
| 123 | self.timesteps = torch.from_numpy(self.timesteps) | ||
| 124 | self.init_noise_sigma = self.sigmas[0] | ||
| 125 | self.derivatives = [] | ||
| 126 | |||
| 127 | def step( | ||
| 128 | self, | ||
| 129 | model_output: Union[torch.FloatTensor, np.ndarray], | ||
| 130 | timestep: Union[float, torch.FloatTensor], | ||
| 131 | step_index: Union[int, torch.IntTensor], | ||
| 132 | sample: Union[torch.FloatTensor, np.ndarray], | ||
| 133 | return_dict: bool = True, | ||
| 134 | ) -> Union[SchedulerOutput, Tuple]: | ||
| 135 | """ | ||
| 136 | Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion | ||
| 137 | process from the learned model outputs (most often the predicted noise). | ||
| 138 | |||
| 139 | Args: | ||
| 140 | model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model. | ||
| 141 | timestep (`int`): current discrete timestep in the diffusion chain. | ||
| 142 | sample (`torch.FloatTensor` or `np.ndarray`): | ||
| 143 | current instance of sample being created by diffusion process. | ||
| 144 | return_dict (`bool`): option for returning tuple rather than SchedulerOutput class | ||
| 145 | |||
| 146 | Returns: | ||
| 147 | [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: | ||
| 148 | [`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When | ||
| 149 | returning a tuple, the first element is the sample tensor. | ||
| 150 | |||
| 151 | """ | ||
| 152 | sigma = self.sigmas[step_index] | ||
| 153 | |||
| 154 | # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise | ||
| 155 | pred_original_sample = sample - sigma * model_output | ||
| 156 | sigma_from = self.sigmas[step_index] | ||
| 157 | sigma_to = self.sigmas[step_index + 1] | ||
| 158 | sigma_up = (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5 | ||
| 159 | sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5 | ||
| 160 | # 2. Convert to an ODE derivative | ||
| 161 | derivative = (sample - pred_original_sample) / sigma | ||
| 162 | self.derivatives.append(derivative) | ||
| 163 | |||
| 164 | dt = sigma_down - sigma | ||
| 165 | |||
| 166 | prev_sample = sample + derivative * dt | ||
| 167 | |||
| 168 | prev_sample = prev_sample + torch.randn_like(prev_sample) * sigma_up | ||
| 169 | |||
| 170 | if not return_dict: | ||
| 171 | return (prev_sample,) | ||
| 172 | |||
| 173 | return SchedulerOutput(prev_sample=prev_sample) | ||
| 174 | |||
| 175 | def add_noise( | ||
| 176 | self, | ||
| 177 | original_samples: torch.FloatTensor, | ||
| 178 | noise: torch.FloatTensor, | ||
| 179 | timesteps: torch.IntTensor, | ||
| 180 | ) -> torch.FloatTensor: | ||
| 181 | # Make sure sigmas and timesteps have the same device and dtype as original_samples | ||
| 182 | self.sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) | ||
| 183 | self.timesteps = self.timesteps.to(original_samples.device) | ||
| 184 | sigma = self.sigmas[timesteps].flatten() | ||
| 185 | while len(sigma.shape) < len(original_samples.shape): | ||
| 186 | sigma = sigma.unsqueeze(-1) | ||
| 187 | |||
| 188 | noisy_samples = original_samples + noise * sigma | ||
| 189 | return noisy_samples | ||
| 190 | |||
| 191 | def __len__(self): | ||
| 192 | return self.config.num_train_timesteps | ||
