diff options
Diffstat (limited to 'schedulers')
| -rw-r--r-- | schedulers/scheduling_euler_ancestral_discrete.py | 261 |
1 files changed, 0 insertions, 261 deletions
diff --git a/schedulers/scheduling_euler_ancestral_discrete.py b/schedulers/scheduling_euler_ancestral_discrete.py deleted file mode 100644 index cef50fe..0000000 --- a/schedulers/scheduling_euler_ancestral_discrete.py +++ /dev/null | |||
| @@ -1,261 +0,0 @@ | |||
| 1 | # Copyright 2022 Katherine Crowson and The HuggingFace Team. All rights reserved. | ||
| 2 | # | ||
| 3 | # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| 4 | # you may not use this file except in compliance with the License. | ||
| 5 | # You may obtain a copy of the License at | ||
| 6 | # | ||
| 7 | # http://www.apache.org/licenses/LICENSE-2.0 | ||
| 8 | # | ||
| 9 | # Unless required by applicable law or agreed to in writing, software | ||
| 10 | # distributed under the License is distributed on an "AS IS" BASIS, | ||
| 11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| 12 | # See the License for the specific language governing permissions and | ||
| 13 | # limitations under the License. | ||
| 14 | |||
| 15 | from dataclasses import dataclass | ||
| 16 | from typing import Optional, Tuple, Union | ||
| 17 | |||
| 18 | import numpy as np | ||
| 19 | import torch | ||
| 20 | |||
| 21 | from diffusers.configuration_utils import ConfigMixin, register_to_config | ||
| 22 | from diffusers.utils import BaseOutput, deprecate, logging | ||
| 23 | from diffusers.schedulers.scheduling_utils import SchedulerMixin | ||
| 24 | |||
| 25 | |||
| 26 | logger = logging.get_logger(__name__) # pylint: disable=invalid-name | ||
| 27 | |||
| 28 | |||
| 29 | @dataclass | ||
| 30 | # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->EulerAncestralDiscrete | ||
| 31 | class EulerAncestralDiscreteSchedulerOutput(BaseOutput): | ||
| 32 | """ | ||
| 33 | Output class for the scheduler's step function output. | ||
| 34 | |||
| 35 | Args: | ||
| 36 | prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | ||
| 37 | Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the | ||
| 38 | denoising loop. | ||
| 39 | pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | ||
| 40 | The predicted denoised sample (x_{0}) based on the model output from the current timestep. | ||
| 41 | `pred_original_sample` can be used to preview progress or for guidance. | ||
| 42 | """ | ||
| 43 | |||
| 44 | prev_sample: torch.FloatTensor | ||
| 45 | pred_original_sample: Optional[torch.FloatTensor] = None | ||
| 46 | |||
| 47 | |||
| 48 | class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin): | ||
| 49 | """ | ||
| 50 | Ancestral sampling with Euler method steps. Based on the original k-diffusion implementation by Katherine Crowson: | ||
| 51 | https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L72 | ||
| 52 | |||
| 53 | [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` | ||
| 54 | function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. | ||
| 55 | [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and | ||
| 56 | [`~ConfigMixin.from_config`] functions. | ||
| 57 | |||
| 58 | Args: | ||
| 59 | num_train_timesteps (`int`): number of diffusion steps used to train the model. | ||
| 60 | beta_start (`float`): the starting `beta` value of inference. | ||
| 61 | beta_end (`float`): the final `beta` value. | ||
| 62 | beta_schedule (`str`): | ||
| 63 | the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from | ||
| 64 | `linear` or `scaled_linear`. | ||
| 65 | trained_betas (`np.ndarray`, optional): | ||
| 66 | option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. | ||
| 67 | |||
| 68 | """ | ||
| 69 | |||
| 70 | @register_to_config | ||
| 71 | def __init__( | ||
| 72 | self, | ||
| 73 | num_train_timesteps: int = 1000, | ||
| 74 | beta_start: float = 0.0001, | ||
| 75 | beta_end: float = 0.02, | ||
| 76 | beta_schedule: str = "linear", | ||
| 77 | trained_betas: Optional[np.ndarray] = None, | ||
| 78 | ): | ||
| 79 | if trained_betas is not None: | ||
| 80 | self.betas = torch.from_numpy(trained_betas) | ||
| 81 | elif beta_schedule == "linear": | ||
| 82 | self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) | ||
| 83 | elif beta_schedule == "scaled_linear": | ||
| 84 | # this schedule is very specific to the latent diffusion model. | ||
| 85 | self.betas = ( | ||
| 86 | torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 | ||
| 87 | ) | ||
| 88 | else: | ||
| 89 | raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") | ||
| 90 | |||
| 91 | self.alphas = 1.0 - self.betas | ||
| 92 | self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) | ||
| 93 | |||
| 94 | sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) | ||
| 95 | sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32) | ||
| 96 | self.sigmas = torch.from_numpy(sigmas) | ||
| 97 | |||
| 98 | # standard deviation of the initial noise distribution | ||
| 99 | self.init_noise_sigma = self.sigmas.max() | ||
| 100 | |||
| 101 | # setable values | ||
| 102 | self.num_inference_steps = None | ||
| 103 | timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy() | ||
| 104 | self.timesteps = torch.from_numpy(timesteps) | ||
| 105 | self.is_scale_input_called = False | ||
| 106 | |||
| 107 | def scale_model_input( | ||
| 108 | self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor] | ||
| 109 | ) -> torch.FloatTensor: | ||
| 110 | """ | ||
| 111 | Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm. | ||
| 112 | |||
| 113 | Args: | ||
| 114 | sample (`torch.FloatTensor`): input sample | ||
| 115 | timestep (`float` or `torch.FloatTensor`): the current timestep in the diffusion chain | ||
| 116 | |||
| 117 | Returns: | ||
| 118 | `torch.FloatTensor`: scaled input sample | ||
| 119 | """ | ||
| 120 | if isinstance(timestep, torch.Tensor): | ||
| 121 | timestep = timestep.to(self.timesteps.device) | ||
| 122 | step_index = (self.timesteps == timestep).nonzero().item() | ||
| 123 | sigma = self.sigmas[step_index] | ||
| 124 | sample = sample / ((sigma**2 + 1) ** 0.5) | ||
| 125 | self.is_scale_input_called = True | ||
| 126 | return sample | ||
| 127 | |||
| 128 | def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): | ||
| 129 | """ | ||
| 130 | Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. | ||
| 131 | |||
| 132 | Args: | ||
| 133 | num_inference_steps (`int`): | ||
| 134 | the number of diffusion steps used when generating samples with a pre-trained model. | ||
| 135 | device (`str` or `torch.device`, optional): | ||
| 136 | the device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | ||
| 137 | """ | ||
| 138 | self.num_inference_steps = num_inference_steps | ||
| 139 | |||
| 140 | timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy() | ||
| 141 | sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) | ||
| 142 | sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) | ||
| 143 | sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) | ||
| 144 | self.sigmas = torch.from_numpy(sigmas).to(device=device) | ||
| 145 | self.timesteps = torch.from_numpy(timesteps).to(device=device) | ||
| 146 | |||
| 147 | def step( | ||
| 148 | self, | ||
| 149 | model_output: torch.FloatTensor, | ||
| 150 | timestep: Union[float, torch.FloatTensor], | ||
| 151 | sample: torch.FloatTensor, | ||
| 152 | generator: Optional[torch.Generator] = None, | ||
| 153 | return_dict: bool = True, | ||
| 154 | ) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]: | ||
| 155 | """ | ||
| 156 | Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion | ||
| 157 | process from the learned model outputs (most often the predicted noise). | ||
| 158 | |||
| 159 | Args: | ||
| 160 | model_output (`torch.FloatTensor`): direct output from learned diffusion model. | ||
| 161 | timestep (`float`): current timestep in the diffusion chain. | ||
| 162 | sample (`torch.FloatTensor`): | ||
| 163 | current instance of sample being created by diffusion process. | ||
| 164 | generator (`torch.Generator`, optional): Random number generator. | ||
| 165 | return_dict (`bool`): option for returning tuple rather than EulerAncestralDiscreteSchedulerOutput class | ||
| 166 | |||
| 167 | Returns: | ||
| 168 | [`~schedulers.scheduling_utils.EulerAncestralDiscreteSchedulerOutput`] or `tuple`: | ||
| 169 | [`~schedulers.scheduling_utils.EulerAncestralDiscreteSchedulerOutput`] if `return_dict` is True, otherwise | ||
| 170 | a `tuple`. When returning a tuple, the first element is the sample tensor. | ||
| 171 | |||
| 172 | """ | ||
| 173 | |||
| 174 | if ( | ||
| 175 | isinstance(timestep, int) | ||
| 176 | or isinstance(timestep, torch.IntTensor) | ||
| 177 | or isinstance(timestep, torch.LongTensor) | ||
| 178 | ): | ||
| 179 | raise ValueError( | ||
| 180 | "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" | ||
| 181 | " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" | ||
| 182 | " one of the `scheduler.timesteps` as a timestep.", | ||
| 183 | ) | ||
| 184 | |||
| 185 | if not self.is_scale_input_called: | ||
| 186 | logger.warn( | ||
| 187 | "The `scale_model_input` function should be called before `step` to ensure correct denoising. " | ||
| 188 | "See `StableDiffusionPipeline` for a usage example." | ||
| 189 | ) | ||
| 190 | |||
| 191 | if isinstance(timestep, torch.Tensor): | ||
| 192 | timestep = timestep.to(self.timesteps.device) | ||
| 193 | |||
| 194 | step_index = (self.timesteps == timestep).nonzero().item() | ||
| 195 | sigma = self.sigmas[step_index] | ||
| 196 | |||
| 197 | # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise | ||
| 198 | pred_original_sample = sample - sigma * model_output | ||
| 199 | sigma_from = self.sigmas[step_index] | ||
| 200 | sigma_to = self.sigmas[step_index + 1] | ||
| 201 | sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5 | ||
| 202 | sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5 | ||
| 203 | |||
| 204 | # 2. Convert to an ODE derivative | ||
| 205 | derivative = (sample - pred_original_sample) / sigma | ||
| 206 | |||
| 207 | dt = sigma_down - sigma | ||
| 208 | |||
| 209 | prev_sample = sample + derivative * dt | ||
| 210 | |||
| 211 | device = model_output.device if torch.is_tensor(model_output) else "cpu" | ||
| 212 | noise = torch.randn(model_output.shape, dtype=model_output.dtype, device=device, generator=generator) | ||
| 213 | prev_sample = prev_sample + noise * sigma_up | ||
| 214 | |||
| 215 | if not return_dict: | ||
| 216 | return (prev_sample,) | ||
| 217 | |||
| 218 | return EulerAncestralDiscreteSchedulerOutput( | ||
| 219 | prev_sample=prev_sample, pred_original_sample=pred_original_sample | ||
| 220 | ) | ||
| 221 | |||
| 222 | def add_noise( | ||
| 223 | self, | ||
| 224 | original_samples: torch.FloatTensor, | ||
| 225 | noise: torch.FloatTensor, | ||
| 226 | timesteps: torch.FloatTensor, | ||
| 227 | ) -> torch.FloatTensor: | ||
| 228 | # Make sure sigmas and timesteps have the same device and dtype as original_samples | ||
| 229 | self.sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) | ||
| 230 | if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): | ||
| 231 | # mps does not support float64 | ||
| 232 | self.timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) | ||
| 233 | timesteps = timesteps.to(original_samples.device, dtype=torch.float32) | ||
| 234 | else: | ||
| 235 | self.timesteps = self.timesteps.to(original_samples.device) | ||
| 236 | timesteps = timesteps.to(original_samples.device) | ||
| 237 | |||
| 238 | schedule_timesteps = self.timesteps | ||
| 239 | |||
| 240 | if isinstance(timesteps, torch.IntTensor) or isinstance(timesteps, torch.LongTensor): | ||
| 241 | deprecate( | ||
| 242 | "timesteps as indices", | ||
| 243 | "0.8.0", | ||
| 244 | "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" | ||
| 245 | " `EulerAncestralDiscreteScheduler.add_noise()` will not be supported in future versions. Make sure to" | ||
| 246 | " pass values from `scheduler.timesteps` as timesteps.", | ||
| 247 | standard_warn=False, | ||
| 248 | ) | ||
| 249 | step_indices = timesteps | ||
| 250 | else: | ||
| 251 | step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] | ||
| 252 | |||
| 253 | sigma = self.sigmas[step_indices].flatten() | ||
| 254 | while len(sigma.shape) < len(original_samples.shape): | ||
| 255 | sigma = sigma.unsqueeze(-1) | ||
| 256 | |||
| 257 | noisy_samples = original_samples + noise * sigma | ||
| 258 | return noisy_samples | ||
| 259 | |||
| 260 | def __len__(self): | ||
| 261 | return self.config.num_train_timesteps | ||
