diff options
Diffstat (limited to 'train_dreambooth.py')
| -rw-r--r-- | train_dreambooth.py | 15 |
1 files changed, 11 insertions, 4 deletions
diff --git a/train_dreambooth.py b/train_dreambooth.py index f1dca7f..d2e60ec 100644 --- a/train_dreambooth.py +++ b/train_dreambooth.py | |||
| @@ -302,6 +302,12 @@ def parse_args(): | |||
| 302 | help='Optimizer to use ["adam", "adam8bit", "dadam", "dadan"]' | 302 | help='Optimizer to use ["adam", "adam8bit", "dadam", "dadan"]' |
| 303 | ) | 303 | ) |
| 304 | parser.add_argument( | 304 | parser.add_argument( |
| 305 | "--dadaptation_d0", | ||
| 306 | type=float, | ||
| 307 | default=1e-6, | ||
| 308 | help="The d0 parameter for Dadaptation optimizers." | ||
| 309 | ) | ||
| 310 | parser.add_argument( | ||
| 305 | "--adam_beta1", | 311 | "--adam_beta1", |
| 306 | type=float, | 312 | type=float, |
| 307 | default=0.9, | 313 | default=0.9, |
| @@ -535,6 +541,7 @@ def main(): | |||
| 535 | weight_decay=args.adam_weight_decay, | 541 | weight_decay=args.adam_weight_decay, |
| 536 | eps=args.adam_epsilon, | 542 | eps=args.adam_epsilon, |
| 537 | decouple=True, | 543 | decouple=True, |
| 544 | d0=args.dadaptation_d0, | ||
| 538 | ) | 545 | ) |
| 539 | 546 | ||
| 540 | args.learning_rate = 1.0 | 547 | args.learning_rate = 1.0 |
| @@ -548,6 +555,7 @@ def main(): | |||
| 548 | dadaptation.DAdaptAdan, | 555 | dadaptation.DAdaptAdan, |
| 549 | weight_decay=args.adam_weight_decay, | 556 | weight_decay=args.adam_weight_decay, |
| 550 | eps=args.adam_epsilon, | 557 | eps=args.adam_epsilon, |
| 558 | d0=args.dadaptation_d0, | ||
| 551 | ) | 559 | ) |
| 552 | 560 | ||
| 553 | args.learning_rate = 1.0 | 561 | args.learning_rate = 1.0 |
| @@ -596,10 +604,9 @@ def main(): | |||
| 596 | datamodule.setup() | 604 | datamodule.setup() |
| 597 | 605 | ||
| 598 | num_train_epochs = args.num_train_epochs | 606 | num_train_epochs = args.num_train_epochs |
| 599 | |||
| 600 | if num_train_epochs is None: | 607 | if num_train_epochs is None: |
| 601 | num_images = math.ceil(len(datamodule.train_dataset) / args.train_batch_size) * args.train_batch_size | 608 | num_train_epochs = math.ceil(args.num_train_steps / len(datamodule.train_dataset)) |
| 602 | num_train_epochs = math.ceil(args.num_train_steps / num_images) | 609 | sample_frequency = math.ceil(num_train_epochs * (args.sample_frequency / args.num_train_steps)) |
| 603 | 610 | ||
| 604 | params_to_optimize = (unet.parameters(), ) | 611 | params_to_optimize = (unet.parameters(), ) |
| 605 | if args.train_text_encoder_epochs != 0: | 612 | if args.train_text_encoder_epochs != 0: |
| @@ -639,7 +646,7 @@ def main(): | |||
| 639 | lr_scheduler=lr_scheduler, | 646 | lr_scheduler=lr_scheduler, |
| 640 | num_train_epochs=num_train_epochs, | 647 | num_train_epochs=num_train_epochs, |
| 641 | gradient_accumulation_steps=args.gradient_accumulation_steps, | 648 | gradient_accumulation_steps=args.gradient_accumulation_steps, |
| 642 | sample_frequency=args.sample_frequency, | 649 | sample_frequency=sample_frequency, |
| 643 | offset_noise_strength=args.offset_noise_strength, | 650 | offset_noise_strength=args.offset_noise_strength, |
| 644 | # -- | 651 | # -- |
| 645 | tokenizer=tokenizer, | 652 | tokenizer=tokenizer, |
