diff options
Diffstat (limited to 'train_lora.py')
| -rw-r--r-- | train_lora.py | 51 |
1 files changed, 32 insertions, 19 deletions
diff --git a/train_lora.py b/train_lora.py index 73b3e19..1ca56d9 100644 --- a/train_lora.py +++ b/train_lora.py | |||
| @@ -1,7 +1,6 @@ | |||
| 1 | import argparse | 1 | import argparse |
| 2 | import datetime | 2 | import datetime |
| 3 | import logging | 3 | import logging |
| 4 | import itertools | ||
| 5 | from pathlib import Path | 4 | from pathlib import Path |
| 6 | from functools import partial | 5 | from functools import partial |
| 7 | import math | 6 | import math |
| @@ -247,9 +246,15 @@ def parse_args(): | |||
| 247 | help="Automatically find a learning rate (no training).", | 246 | help="Automatically find a learning rate (no training).", |
| 248 | ) | 247 | ) |
| 249 | parser.add_argument( | 248 | parser.add_argument( |
| 250 | "--learning_rate", | 249 | "--learning_rate_unet", |
| 251 | type=float, | 250 | type=float, |
| 252 | default=2e-6, | 251 | default=1e-4, |
| 252 | help="Initial learning rate (after the potential warmup period) to use.", | ||
| 253 | ) | ||
| 254 | parser.add_argument( | ||
| 255 | "--learning_rate_text", | ||
| 256 | type=float, | ||
| 257 | default=5e-5, | ||
| 253 | help="Initial learning rate (after the potential warmup period) to use.", | 258 | help="Initial learning rate (after the potential warmup period) to use.", |
| 254 | ) | 259 | ) |
| 255 | parser.add_argument( | 260 | parser.add_argument( |
| @@ -548,13 +553,18 @@ def main(): | |||
| 548 | print(f"Added {len(added_tokens)} tokens from embeddings dir: {list(zip(added_tokens, added_ids))}") | 553 | print(f"Added {len(added_tokens)} tokens from embeddings dir: {list(zip(added_tokens, added_ids))}") |
| 549 | 554 | ||
| 550 | if args.scale_lr: | 555 | if args.scale_lr: |
| 551 | args.learning_rate = ( | 556 | args.learning_rate_unet = ( |
| 552 | args.learning_rate * args.gradient_accumulation_steps * | 557 | args.learning_rate_unet * args.gradient_accumulation_steps * |
| 558 | args.train_batch_size * accelerator.num_processes | ||
| 559 | ) | ||
| 560 | args.learning_rate_text = ( | ||
| 561 | args.learning_rate_text * args.gradient_accumulation_steps * | ||
| 553 | args.train_batch_size * accelerator.num_processes | 562 | args.train_batch_size * accelerator.num_processes |
| 554 | ) | 563 | ) |
| 555 | 564 | ||
| 556 | if args.find_lr: | 565 | if args.find_lr: |
| 557 | args.learning_rate = 1e-6 | 566 | args.learning_rate_unet = 1e-6 |
| 567 | args.learning_rate_text = 1e-6 | ||
| 558 | args.lr_scheduler = "exponential_growth" | 568 | args.lr_scheduler = "exponential_growth" |
| 559 | 569 | ||
| 560 | if args.optimizer == 'adam8bit': | 570 | if args.optimizer == 'adam8bit': |
| @@ -611,8 +621,8 @@ def main(): | |||
| 611 | ) | 621 | ) |
| 612 | 622 | ||
| 613 | args.lr_scheduler = "adafactor" | 623 | args.lr_scheduler = "adafactor" |
| 614 | args.lr_min_lr = args.learning_rate | 624 | args.lr_min_lr = args.learning_rate_unet |
| 615 | args.learning_rate = None | 625 | args.learning_rate_unet = None |
| 616 | elif args.optimizer == 'dadam': | 626 | elif args.optimizer == 'dadam': |
| 617 | try: | 627 | try: |
| 618 | import dadaptation | 628 | import dadaptation |
| @@ -628,7 +638,8 @@ def main(): | |||
| 628 | d0=args.dadaptation_d0, | 638 | d0=args.dadaptation_d0, |
| 629 | ) | 639 | ) |
| 630 | 640 | ||
| 631 | args.learning_rate = 1.0 | 641 | args.learning_rate_unet = 1.0 |
| 642 | args.learning_rate_text = 1.0 | ||
| 632 | elif args.optimizer == 'dadan': | 643 | elif args.optimizer == 'dadan': |
| 633 | try: | 644 | try: |
| 634 | import dadaptation | 645 | import dadaptation |
| @@ -642,7 +653,8 @@ def main(): | |||
| 642 | d0=args.dadaptation_d0, | 653 | d0=args.dadaptation_d0, |
| 643 | ) | 654 | ) |
| 644 | 655 | ||
| 645 | args.learning_rate = 1.0 | 656 | args.learning_rate_unet = 1.0 |
| 657 | args.learning_rate_text = 1.0 | ||
| 646 | else: | 658 | else: |
| 647 | raise ValueError(f"Unknown --optimizer \"{args.optimizer}\"") | 659 | raise ValueError(f"Unknown --optimizer \"{args.optimizer}\"") |
| 648 | 660 | ||
| @@ -695,15 +707,16 @@ def main(): | |||
| 695 | sample_frequency = math.ceil(num_train_epochs * (sample_frequency / args.num_train_steps)) | 707 | sample_frequency = math.ceil(num_train_epochs * (sample_frequency / args.num_train_steps)) |
| 696 | 708 | ||
| 697 | optimizer = create_optimizer( | 709 | optimizer = create_optimizer( |
| 698 | ( | 710 | [ |
| 699 | param | 711 | { |
| 700 | for param in itertools.chain( | 712 | "params": unet.parameters(), |
| 701 | unet.parameters(), | 713 | "lr": args.learning_rate_unet, |
| 702 | text_encoder.parameters(), | 714 | }, |
| 703 | ) | 715 | { |
| 704 | if param.requires_grad | 716 | "params": text_encoder.parameters(), |
| 705 | ), | 717 | "lr": args.learning_rate_text, |
| 706 | lr=args.learning_rate, | 718 | }, |
| 719 | ] | ||
| 707 | ) | 720 | ) |
| 708 | 721 | ||
| 709 | lr_scheduler = get_scheduler( | 722 | lr_scheduler = get_scheduler( |
