diff options
Diffstat (limited to 'train_lora.py')
| -rw-r--r-- | train_lora.py | 66 |
1 files changed, 44 insertions, 22 deletions
diff --git a/train_lora.py b/train_lora.py index e81742a..4bbc64e 100644 --- a/train_lora.py +++ b/train_lora.py | |||
| @@ -199,6 +199,11 @@ def parse_args(): | |||
| 199 | help="The embeddings directory where Textual Inversion embeddings are stored.", | 199 | help="The embeddings directory where Textual Inversion embeddings are stored.", |
| 200 | ) | 200 | ) |
| 201 | parser.add_argument( | 201 | parser.add_argument( |
| 202 | "--train_dir_embeddings", | ||
| 203 | action="store_true", | ||
| 204 | help="Train embeddings loaded from embeddings directory.", | ||
| 205 | ) | ||
| 206 | parser.add_argument( | ||
| 202 | "--collection", | 207 | "--collection", |
| 203 | type=str, | 208 | type=str, |
| 204 | nargs='*', | 209 | nargs='*', |
| @@ -440,6 +445,12 @@ def parse_args(): | |||
| 440 | help="How often to save a checkpoint and sample image", | 445 | help="How often to save a checkpoint and sample image", |
| 441 | ) | 446 | ) |
| 442 | parser.add_argument( | 447 | parser.add_argument( |
| 448 | "--sample_num", | ||
| 449 | type=int, | ||
| 450 | default=None, | ||
| 451 | help="How often to save a checkpoint and sample image (in number of samples)", | ||
| 452 | ) | ||
| 453 | parser.add_argument( | ||
| 443 | "--sample_image_size", | 454 | "--sample_image_size", |
| 444 | type=int, | 455 | type=int, |
| 445 | default=768, | 456 | default=768, |
| @@ -681,27 +692,36 @@ def main(): | |||
| 681 | embeddings.persist() | 692 | embeddings.persist() |
| 682 | print(f"Added {len(added_tokens)} aliases: {list(zip(alias_placeholder_tokens, added_tokens, alias_initializer_tokens, added_ids))}") | 693 | print(f"Added {len(added_tokens)} aliases: {list(zip(alias_placeholder_tokens, added_tokens, alias_initializer_tokens, added_ids))}") |
| 683 | 694 | ||
| 695 | placeholder_token_ids = [] | ||
| 696 | |||
| 684 | if args.embeddings_dir is not None: | 697 | if args.embeddings_dir is not None: |
| 685 | embeddings_dir = Path(args.embeddings_dir) | 698 | embeddings_dir = Path(args.embeddings_dir) |
| 686 | if not embeddings_dir.exists() or not embeddings_dir.is_dir(): | 699 | if not embeddings_dir.exists() or not embeddings_dir.is_dir(): |
| 687 | raise ValueError("--embeddings_dir must point to an existing directory") | 700 | raise ValueError("--embeddings_dir must point to an existing directory") |
| 688 | 701 | ||
| 689 | added_tokens, added_ids = load_embeddings_from_dir(tokenizer, embeddings, embeddings_dir) | 702 | added_tokens, added_ids = load_embeddings_from_dir(tokenizer, embeddings, embeddings_dir) |
| 690 | embeddings.persist() | ||
| 691 | print(f"Added {len(added_tokens)} tokens from embeddings dir: {list(zip(added_tokens, added_ids))}") | 703 | print(f"Added {len(added_tokens)} tokens from embeddings dir: {list(zip(added_tokens, added_ids))}") |
| 692 | 704 | ||
| 693 | placeholder_token_ids, initializer_token_ids = add_placeholder_tokens( | 705 | if args.train_dir_embeddings: |
| 694 | tokenizer=tokenizer, | 706 | args.placeholder_tokens = added_tokens |
| 695 | embeddings=embeddings, | 707 | placeholder_token_ids = added_ids |
| 696 | placeholder_tokens=args.placeholder_tokens, | 708 | print("Training embeddings from embeddings dir") |
| 697 | initializer_tokens=args.initializer_tokens, | 709 | else: |
| 698 | num_vectors=args.num_vectors, | 710 | embeddings.persist() |
| 699 | initializer_noise=args.initializer_noise, | 711 | |
| 700 | ) | 712 | if not args.train_dir_embeddings: |
| 701 | stats = list(zip( | 713 | placeholder_token_ids, initializer_token_ids = add_placeholder_tokens( |
| 702 | args.placeholder_tokens, placeholder_token_ids, args.initializer_tokens, initializer_token_ids | 714 | tokenizer=tokenizer, |
| 703 | )) | 715 | embeddings=embeddings, |
| 704 | print(f"Training embeddings: {stats}") | 716 | placeholder_tokens=args.placeholder_tokens, |
| 717 | initializer_tokens=args.initializer_tokens, | ||
| 718 | num_vectors=args.num_vectors, | ||
| 719 | initializer_noise=args.initializer_noise, | ||
| 720 | ) | ||
| 721 | stats = list(zip( | ||
| 722 | args.placeholder_tokens, placeholder_token_ids, args.initializer_tokens, initializer_token_ids | ||
| 723 | )) | ||
| 724 | print(f"Training embeddings: {stats}") | ||
| 705 | 725 | ||
| 706 | if args.scale_lr: | 726 | if args.scale_lr: |
| 707 | args.learning_rate_unet = ( | 727 | args.learning_rate_unet = ( |
| @@ -897,6 +917,8 @@ def main(): | |||
| 897 | args.num_train_steps / len(lora_datamodule.train_dataset) | 917 | args.num_train_steps / len(lora_datamodule.train_dataset) |
| 898 | ) * args.gradient_accumulation_steps | 918 | ) * args.gradient_accumulation_steps |
| 899 | lora_sample_frequency = math.ceil(num_train_epochs * (lora_sample_frequency / args.num_train_steps)) | 919 | lora_sample_frequency = math.ceil(num_train_epochs * (lora_sample_frequency / args.num_train_steps)) |
| 920 | if args.sample_num is not None: | ||
| 921 | lora_sample_frequency = math.ceil(num_train_epochs / args.sample_num) | ||
| 900 | 922 | ||
| 901 | params_to_optimize = [] | 923 | params_to_optimize = [] |
| 902 | group_labels = [] | 924 | group_labels = [] |
| @@ -930,15 +952,6 @@ def main(): | |||
| 930 | ] | 952 | ] |
| 931 | group_labels += ["unet", "text"] | 953 | group_labels += ["unet", "text"] |
| 932 | 954 | ||
| 933 | lora_optimizer = create_optimizer(params_to_optimize) | ||
| 934 | |||
| 935 | lora_lr_scheduler = create_lr_scheduler( | ||
| 936 | gradient_accumulation_steps=args.gradient_accumulation_steps, | ||
| 937 | optimizer=lora_optimizer, | ||
| 938 | num_training_steps_per_epoch=len(lora_datamodule.train_dataloader), | ||
| 939 | train_epochs=num_train_epochs, | ||
| 940 | ) | ||
| 941 | |||
| 942 | training_iter = 0 | 955 | training_iter = 0 |
| 943 | 956 | ||
| 944 | while True: | 957 | while True: |
| @@ -952,6 +965,15 @@ def main(): | |||
| 952 | print(f"============ LoRA cycle {training_iter} ============") | 965 | print(f"============ LoRA cycle {training_iter} ============") |
| 953 | print("") | 966 | print("") |
| 954 | 967 | ||
| 968 | lora_optimizer = create_optimizer(params_to_optimize) | ||
| 969 | |||
| 970 | lora_lr_scheduler = create_lr_scheduler( | ||
| 971 | gradient_accumulation_steps=args.gradient_accumulation_steps, | ||
| 972 | optimizer=lora_optimizer, | ||
| 973 | num_training_steps_per_epoch=len(lora_datamodule.train_dataloader), | ||
| 974 | train_epochs=num_train_epochs, | ||
| 975 | ) | ||
| 976 | |||
| 955 | lora_project = f"lora_{training_iter}" | 977 | lora_project = f"lora_{training_iter}" |
| 956 | lora_checkpoint_output_dir = output_dir / lora_project / "model" | 978 | lora_checkpoint_output_dir = output_dir / lora_project / "model" |
| 957 | lora_sample_output_dir = output_dir / lora_project / "samples" | 979 | lora_sample_output_dir = output_dir / lora_project / "samples" |
