summaryrefslogtreecommitdiffstats
path: root/training/functional.py
diff options
context:
space:
mode:
Diffstat (limited to 'training/functional.py')
-rw-r--r--training/functional.py365
1 files changed, 365 insertions, 0 deletions
diff --git a/training/functional.py b/training/functional.py
new file mode 100644
index 0000000..2d81eca
--- /dev/null
+++ b/training/functional.py
@@ -0,0 +1,365 @@
1import math
2from contextlib import _GeneratorContextManager, nullcontext
3from typing import Callable, Any, Tuple, Union
4
5import torch
6import torch.nn.functional as F
7from torch.utils.data import DataLoader
8
9from accelerate import Accelerator
10from transformers import CLIPTextModel
11from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel, DPMSolverMultistepScheduler
12
13from tqdm.auto import tqdm
14
15from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion
16from models.clip.embeddings import ManagedCLIPTextEmbeddings, patch_managed_embeddings
17from models.clip.util import get_extended_embeddings
18from models.clip.tokenizer import MultiCLIPTokenizer
19from training.util import AverageMeter
20from trainer.base import Checkpointer
21
22
23def const(result=None):
24 def fn(*args, **kwargs):
25 return result
26 return fn
27
28
29def generate_class_images(
30 accelerator,
31 text_encoder,
32 vae,
33 unet,
34 tokenizer,
35 scheduler,
36 data_train,
37 sample_batch_size,
38 sample_image_size,
39 sample_steps
40):
41 missing_data = [item for item in data_train if not item.class_image_path.exists()]
42
43 if len(missing_data) == 0:
44 return
45
46 batched_data = [
47 missing_data[i:i+sample_batch_size]
48 for i in range(0, len(missing_data), sample_batch_size)
49 ]
50
51 pipeline = VlpnStableDiffusion(
52 text_encoder=text_encoder,
53 vae=vae,
54 unet=unet,
55 tokenizer=tokenizer,
56 scheduler=scheduler,
57 ).to(accelerator.device)
58 pipeline.set_progress_bar_config(dynamic_ncols=True)
59
60 with torch.inference_mode():
61 for batch in batched_data:
62 image_name = [item.class_image_path for item in batch]
63 prompt = [item.cprompt for item in batch]
64 nprompt = [item.nprompt for item in batch]
65
66 images = pipeline(
67 prompt=prompt,
68 negative_prompt=nprompt,
69 height=sample_image_size,
70 width=sample_image_size,
71 num_inference_steps=sample_steps
72 ).images
73
74 for i, image in enumerate(images):
75 image.save(image_name[i])
76
77 del pipeline
78
79 if torch.cuda.is_available():
80 torch.cuda.empty_cache()
81
82
83def get_models(pretrained_model_name_or_path: str):
84 tokenizer = MultiCLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder='tokenizer')
85 text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path, subfolder='text_encoder')
86 vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder='vae')
87 unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder='unet')
88 noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder='scheduler')
89 sample_scheduler = DPMSolverMultistepScheduler.from_pretrained(
90 pretrained_model_name_or_path, subfolder='scheduler')
91
92 vae.enable_slicing()
93 vae.set_use_memory_efficient_attention_xformers(True)
94 unet.set_use_memory_efficient_attention_xformers(True)
95
96 embeddings = patch_managed_embeddings(text_encoder)
97
98 return tokenizer, text_encoder, vae, unet, noise_scheduler, sample_scheduler, embeddings
99
100
101def add_placeholder_tokens(
102 tokenizer: MultiCLIPTokenizer,
103 embeddings: ManagedCLIPTextEmbeddings,
104 placeholder_tokens: list[str],
105 initializer_tokens: list[str],
106 num_vectors: Union[list[int], int]
107):
108 initializer_token_ids = [
109 tokenizer.encode(token, add_special_tokens=False)
110 for token in initializer_tokens
111 ]
112 placeholder_token_ids = tokenizer.add_multi_tokens(placeholder_tokens, num_vectors)
113
114 embeddings.resize(len(tokenizer))
115
116 for (placeholder_token_id, initializer_token_id) in zip(placeholder_token_ids, initializer_token_ids):
117 embeddings.add_embed(placeholder_token_id, initializer_token_id)
118
119 return placeholder_token_ids, initializer_token_ids
120
121
122def loss_step(
123 vae: AutoencoderKL,
124 noise_scheduler: DDPMScheduler,
125 unet: UNet2DConditionModel,
126 text_encoder: CLIPTextModel,
127 prior_loss_weight: float,
128 seed: int,
129 step: int,
130 batch: dict[str, Any],
131 eval: bool = False
132):
133 # Convert images to latent space
134 latents = vae.encode(batch["pixel_values"]).latent_dist.sample().detach()
135 latents = latents * 0.18215
136
137 generator = torch.Generator(device=latents.device).manual_seed(seed + step) if eval else None
138
139 # Sample noise that we'll add to the latents
140 noise = torch.randn(
141 latents.shape,
142 dtype=latents.dtype,
143 layout=latents.layout,
144 device=latents.device,
145 generator=generator
146 )
147 bsz = latents.shape[0]
148 # Sample a random timestep for each image
149 timesteps = torch.randint(
150 0,
151 noise_scheduler.config.num_train_timesteps,
152 (bsz,),
153 generator=generator,
154 device=latents.device,
155 )
156 timesteps = timesteps.long()
157
158 # Add noise to the latents according to the noise magnitude at each timestep
159 # (this is the forward diffusion process)
160 noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
161 noisy_latents = noisy_latents.to(dtype=unet.dtype)
162
163 # Get the text embedding for conditioning
164 encoder_hidden_states = get_extended_embeddings(
165 text_encoder,
166 batch["input_ids"],
167 batch["attention_mask"]
168 )
169 encoder_hidden_states = encoder_hidden_states.to(dtype=unet.dtype)
170
171 # Predict the noise residual
172 model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
173
174 # Get the target for loss depending on the prediction type
175 if noise_scheduler.config.prediction_type == "epsilon":
176 target = noise
177 elif noise_scheduler.config.prediction_type == "v_prediction":
178 target = noise_scheduler.get_velocity(latents, noise, timesteps)
179 else:
180 raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
181
182 if batch["with_prior"].all():
183 # Chunk the noise and model_pred into two parts and compute the loss on each part separately.
184 model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
185 target, target_prior = torch.chunk(target, 2, dim=0)
186
187 # Compute instance loss
188 loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
189
190 # Compute prior loss
191 prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
192
193 # Add the prior loss to the instance loss.
194 loss = loss + prior_loss_weight * prior_loss
195 else:
196 loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
197
198 acc = (model_pred == target).float().mean()
199
200 return loss, acc, bsz
201
202
203def train_loop(
204 accelerator: Accelerator,
205 optimizer: torch.optim.Optimizer,
206 lr_scheduler: torch.optim.lr_scheduler._LRScheduler,
207 model: torch.nn.Module,
208 checkpointer: Checkpointer,
209 train_dataloader: DataLoader,
210 val_dataloader: DataLoader,
211 loss_step: Union[Callable[[int, Any], Tuple[Any, Any, int]], Callable[[int, Any, bool], Tuple[Any, Any, int]]],
212 sample_frequency: int = 10,
213 checkpoint_frequency: int = 50,
214 global_step_offset: int = 0,
215 num_epochs: int = 100,
216 on_log: Callable[[], dict[str, Any]] = const({}),
217 on_train: Callable[[int], _GeneratorContextManager] = const(nullcontext()),
218 on_before_optimize: Callable[[int], None] = const(),
219 on_after_optimize: Callable[[float], None] = const(),
220 on_eval: Callable[[], _GeneratorContextManager] = const(nullcontext())
221):
222 num_training_steps_per_epoch = math.ceil(len(train_dataloader) / accelerator.gradient_accumulation_steps)
223 num_val_steps_per_epoch = len(val_dataloader)
224
225 num_training_steps = num_training_steps_per_epoch * num_epochs
226 num_val_steps = num_val_steps_per_epoch * num_epochs
227
228 global_step = 0
229
230 avg_loss = AverageMeter()
231 avg_acc = AverageMeter()
232
233 avg_loss_val = AverageMeter()
234 avg_acc_val = AverageMeter()
235
236 max_acc_val = 0.0
237
238 local_progress_bar = tqdm(
239 range(num_training_steps_per_epoch + num_val_steps_per_epoch),
240 disable=not accelerator.is_local_main_process,
241 dynamic_ncols=True
242 )
243 local_progress_bar.set_description(f"Epoch 1 / {num_epochs}")
244
245 global_progress_bar = tqdm(
246 range(num_training_steps + num_val_steps),
247 disable=not accelerator.is_local_main_process,
248 dynamic_ncols=True
249 )
250 global_progress_bar.set_description("Total progress")
251
252 try:
253 for epoch in range(num_epochs):
254 if accelerator.is_main_process:
255 if epoch % sample_frequency == 0:
256 checkpointer.save_samples(global_step + global_step_offset)
257
258 if epoch % checkpoint_frequency == 0 and epoch != 0:
259 checkpointer.checkpoint(global_step + global_step_offset, "training")
260
261 local_progress_bar.set_description(f"Epoch {epoch + 1} / {num_epochs}")
262 local_progress_bar.reset()
263
264 model.train()
265
266 with on_train(epoch):
267 for step, batch in enumerate(train_dataloader):
268 with accelerator.accumulate(model):
269 loss, acc, bsz = loss_step(step, batch)
270
271 accelerator.backward(loss)
272
273 on_before_optimize(epoch)
274
275 optimizer.step()
276 lr_scheduler.step()
277 optimizer.zero_grad(set_to_none=True)
278
279 avg_loss.update(loss.detach_(), bsz)
280 avg_acc.update(acc.detach_(), bsz)
281
282 # Checks if the accelerator has performed an optimization step behind the scenes
283 if accelerator.sync_gradients:
284 on_after_optimize(lr_scheduler.get_last_lr()[0])
285
286 local_progress_bar.update(1)
287 global_progress_bar.update(1)
288
289 global_step += 1
290
291 logs = {
292 "train/loss": avg_loss.avg.item(),
293 "train/acc": avg_acc.avg.item(),
294 "train/cur_loss": loss.item(),
295 "train/cur_acc": acc.item(),
296 "lr": lr_scheduler.get_last_lr()[0],
297 }
298 logs.update(on_log())
299
300 accelerator.log(logs, step=global_step)
301
302 local_progress_bar.set_postfix(**logs)
303
304 if global_step >= num_training_steps:
305 break
306
307 accelerator.wait_for_everyone()
308
309 model.eval()
310
311 cur_loss_val = AverageMeter()
312 cur_acc_val = AverageMeter()
313
314 with torch.inference_mode(), on_eval():
315 for step, batch in enumerate(val_dataloader):
316 loss, acc, bsz = loss_step(step, batch, True)
317
318 loss = loss.detach_()
319 acc = acc.detach_()
320
321 cur_loss_val.update(loss, bsz)
322 cur_acc_val.update(acc, bsz)
323
324 avg_loss_val.update(loss, bsz)
325 avg_acc_val.update(acc, bsz)
326
327 local_progress_bar.update(1)
328 global_progress_bar.update(1)
329
330 logs = {
331 "val/loss": avg_loss_val.avg.item(),
332 "val/acc": avg_acc_val.avg.item(),
333 "val/cur_loss": loss.item(),
334 "val/cur_acc": acc.item(),
335 }
336 local_progress_bar.set_postfix(**logs)
337
338 logs["val/cur_loss"] = cur_loss_val.avg.item()
339 logs["val/cur_acc"] = cur_acc_val.avg.item()
340
341 accelerator.log(logs, step=global_step)
342
343 local_progress_bar.clear()
344 global_progress_bar.clear()
345
346 if accelerator.is_main_process:
347 if avg_acc_val.avg.item() > max_acc_val:
348 accelerator.print(
349 f"Global step {global_step}: Validation accuracy reached new maximum: {max_acc_val:.2e} -> {avg_acc_val.avg.item():.2e}")
350 checkpointer.checkpoint(global_step + global_step_offset, "milestone")
351 max_acc_val = avg_acc_val.avg.item()
352
353 # Create the pipeline using using the trained modules and save it.
354 if accelerator.is_main_process:
355 print("Finished!")
356 checkpointer.checkpoint(global_step + global_step_offset, "end")
357 checkpointer.save_samples(global_step + global_step_offset)
358 accelerator.end_training()
359
360 except KeyboardInterrupt:
361 if accelerator.is_main_process:
362 print("Interrupted")
363 checkpointer.checkpoint(global_step + global_step_offset, "end")
364 accelerator.end_training()
365 quit()