diff options
Diffstat (limited to 'training/modules')
| -rw-r--r-- | training/modules/dreambooth.py | 0 | ||||
| -rw-r--r-- | training/modules/lora.py | 0 | ||||
| -rw-r--r-- | training/modules/ti.py | 284 |
3 files changed, 284 insertions, 0 deletions
diff --git a/training/modules/dreambooth.py b/training/modules/dreambooth.py new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/training/modules/dreambooth.py | |||
diff --git a/training/modules/lora.py b/training/modules/lora.py new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/training/modules/lora.py | |||
diff --git a/training/modules/ti.py b/training/modules/ti.py new file mode 100644 index 0000000..2db6f88 --- /dev/null +++ b/training/modules/ti.py | |||
| @@ -0,0 +1,284 @@ | |||
| 1 | from typing import Literal | ||
| 2 | from functools import partial | ||
| 3 | from contextlib import contextmanager, nullcontext | ||
| 4 | |||
| 5 | import torch | ||
| 6 | |||
| 7 | from slugify import slugify | ||
| 8 | |||
| 9 | from accelerate import Accelerator | ||
| 10 | from transformers import CLIPTextModel | ||
| 11 | from diffusers import AutoencoderKL, UNet2DConditionModel | ||
| 12 | |||
| 13 | from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion | ||
| 14 | from models.clip.tokenizer import MultiCLIPTokenizer | ||
| 15 | |||
| 16 | from training.common import TrainingSetup, get_scheduler, train_loop, loss_step | ||
| 17 | from training.util import EMAModel, CheckpointerBase | ||
| 18 | |||
| 19 | |||
| 20 | class Checkpointer(CheckpointerBase): | ||
| 21 | def __init__( | ||
| 22 | self, | ||
| 23 | accelerator: Accelerator, | ||
| 24 | vae: AutoencoderKL, | ||
| 25 | unet: UNet2DConditionModel, | ||
| 26 | tokenizer: MultiCLIPTokenizer, | ||
| 27 | text_encoder: CLIPTextModel, | ||
| 28 | ema_embeddings: EMAModel, | ||
| 29 | weight_dtype: torch.dtype, | ||
| 30 | scheduler, | ||
| 31 | placeholder_token, | ||
| 32 | placeholder_token_ids, | ||
| 33 | *args, | ||
| 34 | **kwargs | ||
| 35 | ): | ||
| 36 | super().__init__(*args, **kwargs) | ||
| 37 | |||
| 38 | self.weight_dtype = weight_dtype | ||
| 39 | self.accelerator = accelerator | ||
| 40 | self.vae = vae | ||
| 41 | self.unet = unet | ||
| 42 | self.tokenizer = tokenizer | ||
| 43 | self.text_encoder = text_encoder | ||
| 44 | self.ema_embeddings = ema_embeddings | ||
| 45 | self.scheduler = scheduler | ||
| 46 | self.placeholder_token = placeholder_token | ||
| 47 | self.placeholder_token_ids = placeholder_token_ids | ||
| 48 | |||
| 49 | @torch.no_grad() | ||
| 50 | def checkpoint(self, step, postfix): | ||
| 51 | print("Saving checkpoint for step %d..." % step) | ||
| 52 | |||
| 53 | checkpoints_path = self.output_dir.joinpath("checkpoints") | ||
| 54 | checkpoints_path.mkdir(parents=True, exist_ok=True) | ||
| 55 | |||
| 56 | text_encoder = self.accelerator.unwrap_model(self.text_encoder) | ||
| 57 | |||
| 58 | ema_context = nullcontext() | ||
| 59 | if self.ema_embeddings is not None: | ||
| 60 | ema_context = self.ema_embeddings.apply_temporary( | ||
| 61 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
| 62 | |||
| 63 | with ema_context: | ||
| 64 | for (token, ids) in zip(self.placeholder_token, self.placeholder_token_ids): | ||
| 65 | text_encoder.text_model.embeddings.save_embed( | ||
| 66 | ids, | ||
| 67 | checkpoints_path.joinpath(f"{slugify(token)}_{step}_{postfix}.bin") | ||
| 68 | ) | ||
| 69 | |||
| 70 | del text_encoder | ||
| 71 | |||
| 72 | @torch.no_grad() | ||
| 73 | def save_samples(self, step, num_inference_steps, guidance_scale=7.5, eta=0.0): | ||
| 74 | text_encoder = self.accelerator.unwrap_model(self.text_encoder) | ||
| 75 | |||
| 76 | ema_context = nullcontext() | ||
| 77 | if self.ema_embeddings is not None: | ||
| 78 | ema_context = self.ema_embeddings.apply_temporary( | ||
| 79 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
| 80 | |||
| 81 | with ema_context: | ||
| 82 | orig_dtype = text_encoder.dtype | ||
| 83 | text_encoder.to(dtype=self.weight_dtype) | ||
| 84 | |||
| 85 | pipeline = VlpnStableDiffusion( | ||
| 86 | text_encoder=text_encoder, | ||
| 87 | vae=self.vae, | ||
| 88 | unet=self.unet, | ||
| 89 | tokenizer=self.tokenizer, | ||
| 90 | scheduler=self.scheduler, | ||
| 91 | ).to(self.accelerator.device) | ||
| 92 | pipeline.set_progress_bar_config(dynamic_ncols=True) | ||
| 93 | |||
| 94 | super().save_samples(pipeline, step, num_inference_steps, guidance_scale, eta) | ||
| 95 | |||
| 96 | text_encoder.to(dtype=orig_dtype) | ||
| 97 | |||
| 98 | del text_encoder | ||
| 99 | del pipeline | ||
| 100 | |||
| 101 | if torch.cuda.is_available(): | ||
| 102 | torch.cuda.empty_cache() | ||
| 103 | |||
| 104 | |||
| 105 | def train_ti( | ||
| 106 | setup: TrainingSetup, | ||
| 107 | num_train_epochs: int = 100, | ||
| 108 | num_class_images: int = 0, | ||
| 109 | prior_loss_weight: float = 1.0, | ||
| 110 | use_ema: bool = False, | ||
| 111 | ema_inv_gamma: float = 1.0, | ||
| 112 | ema_power: float = 4/5, | ||
| 113 | ema_max_decay: float = .9999, | ||
| 114 | adam_beta1: float = 0.9, | ||
| 115 | adam_beta2: float = 0.999, | ||
| 116 | adam_weight_decay: float = 0, | ||
| 117 | adam_epsilon: float = 1e-08, | ||
| 118 | adam_amsgrad: bool = False, | ||
| 119 | lr_scheduler: Literal[ | ||
| 120 | "linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup", "one_cycle" | ||
| 121 | ] = "one_cycle", | ||
| 122 | lr_min_lr: float = 0.04, | ||
| 123 | lr_warmup_func: Literal["linear", "cos"] = "cos", | ||
| 124 | lr_annealing_func: Literal["linear", "half_cos", "cos"] = "cos", | ||
| 125 | lr_warmup_exp: int = 1, | ||
| 126 | lr_annealing_exp: int = 1, | ||
| 127 | lr_cycles: int = 1, | ||
| 128 | lr_warmup_epochs: int = 10, | ||
| 129 | emb_decay_target: float = 0.4, | ||
| 130 | emb_decay_factor: float = 1, | ||
| 131 | emb_decay_start: float = 1e-4, | ||
| 132 | sample_image_size: int = 768, | ||
| 133 | sample_batch_size: int = 1, | ||
| 134 | sample_batches: int = 1, | ||
| 135 | sample_frequency: int = 10, | ||
| 136 | sample_steps: int = 20, | ||
| 137 | checkpoint_frequency: int = 50, | ||
| 138 | global_step_offset: int = 0, | ||
| 139 | ): | ||
| 140 | if use_ema: | ||
| 141 | ema_embeddings = EMAModel( | ||
| 142 | setup.text_encoder.text_model.embeddings.temp_token_embedding.parameters(), | ||
| 143 | inv_gamma=ema_inv_gamma, | ||
| 144 | power=ema_power, | ||
| 145 | max_value=ema_max_decay, | ||
| 146 | ) | ||
| 147 | else: | ||
| 148 | ema_embeddings = None | ||
| 149 | |||
| 150 | setup.text_encoder.requires_grad_(True) | ||
| 151 | setup.text_encoder.text_model.encoder.requires_grad_(False) | ||
| 152 | setup.text_encoder.text_model.final_layer_norm.requires_grad_(False) | ||
| 153 | setup.text_encoder.text_model.embeddings.position_embedding.requires_grad_(False) | ||
| 154 | setup.text_encoder.text_model.embeddings.token_embedding.requires_grad_(False) | ||
| 155 | |||
| 156 | # Initialize the optimizer | ||
| 157 | optimizer = setup.optimizer_class( | ||
| 158 | setup.text_encoder.text_model.embeddings.temp_token_embedding.parameters(), | ||
| 159 | lr=setup.learning_rate, | ||
| 160 | betas=(adam_beta1, adam_beta2), | ||
| 161 | weight_decay=adam_weight_decay, | ||
| 162 | eps=adam_epsilon, | ||
| 163 | amsgrad=adam_amsgrad, | ||
| 164 | ) | ||
| 165 | |||
| 166 | lr_scheduler = get_scheduler( | ||
| 167 | lr_scheduler, | ||
| 168 | optimizer=optimizer, | ||
| 169 | min_lr=lr_min_lr, | ||
| 170 | warmup_func=lr_warmup_func, | ||
| 171 | annealing_func=lr_annealing_func, | ||
| 172 | warmup_exp=lr_warmup_exp, | ||
| 173 | annealing_exp=lr_annealing_exp, | ||
| 174 | cycles=lr_cycles, | ||
| 175 | train_epochs=num_train_epochs, | ||
| 176 | warmup_epochs=lr_warmup_epochs, | ||
| 177 | num_training_steps_per_epoch=len(setup.train_dataloader), | ||
| 178 | gradient_accumulation_steps=setup.accelerator.gradient_accumulation_steps | ||
| 179 | ) | ||
| 180 | |||
| 181 | text_encoder, optimizer, lr_scheduler = setup.accelerator.prepare( | ||
| 182 | setup.text_encoder, optimizer, lr_scheduler | ||
| 183 | ) | ||
| 184 | |||
| 185 | # Move vae and unet to device | ||
| 186 | setup.vae.to(setup.accelerator.device, dtype=setup.weight_dtype) | ||
| 187 | setup.unet.to(setup.accelerator.device, dtype=setup.weight_dtype) | ||
| 188 | |||
| 189 | if use_ema: | ||
| 190 | ema_embeddings.to(setup.accelerator.device) | ||
| 191 | |||
| 192 | setup.unet.train() | ||
| 193 | |||
| 194 | @contextmanager | ||
| 195 | def on_train(epoch: int): | ||
| 196 | try: | ||
| 197 | setup.tokenizer.train() | ||
| 198 | yield | ||
| 199 | finally: | ||
| 200 | pass | ||
| 201 | |||
| 202 | @contextmanager | ||
| 203 | def on_eval(): | ||
| 204 | try: | ||
| 205 | setup.tokenizer.eval() | ||
| 206 | |||
| 207 | ema_context = nullcontext() | ||
| 208 | if use_ema: | ||
| 209 | ema_context = ema_embeddings.apply_temporary( | ||
| 210 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
| 211 | |||
| 212 | with ema_context: | ||
| 213 | yield | ||
| 214 | finally: | ||
| 215 | pass | ||
| 216 | |||
| 217 | @torch.no_grad() | ||
| 218 | def on_after_optimize(lr: float): | ||
| 219 | text_encoder.text_model.embeddings.normalize( | ||
| 220 | emb_decay_target, | ||
| 221 | min(1.0, max(0.0, emb_decay_factor * ((lr - emb_decay_start) / (setup.learning_rate - emb_decay_start)))) | ||
| 222 | ) | ||
| 223 | |||
| 224 | if use_ema: | ||
| 225 | ema_embeddings.step(text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
| 226 | |||
| 227 | def on_log(): | ||
| 228 | if use_ema: | ||
| 229 | return {"ema_decay": ema_embeddings.decay} | ||
| 230 | return {} | ||
| 231 | |||
| 232 | loss_step_ = partial( | ||
| 233 | loss_step, | ||
| 234 | setup.vae, | ||
| 235 | setup.noise_scheduler, | ||
| 236 | setup.unet, | ||
| 237 | text_encoder, | ||
| 238 | num_class_images != 0, | ||
| 239 | prior_loss_weight, | ||
| 240 | setup.seed, | ||
| 241 | ) | ||
| 242 | |||
| 243 | checkpointer = Checkpointer( | ||
| 244 | accelerator=setup.accelerator, | ||
| 245 | vae=setup.vae, | ||
| 246 | unet=setup.unet, | ||
| 247 | tokenizer=setup.tokenizer, | ||
| 248 | text_encoder=text_encoder, | ||
| 249 | ema_embeddings=ema_embeddings, | ||
| 250 | weight_dtype=setup.weight_dtype, | ||
| 251 | scheduler=setup.checkpoint_scheduler, | ||
| 252 | placeholder_token=setup.placeholder_token, | ||
| 253 | placeholder_token_ids=setup.placeholder_token_ids, | ||
| 254 | train_dataloader=setup.train_dataloader, | ||
| 255 | val_dataloader=setup.val_dataloader, | ||
| 256 | output_dir=setup.output_dir, | ||
| 257 | seed=setup.seed, | ||
| 258 | sample_image_size=sample_image_size, | ||
| 259 | sample_batch_size=sample_batch_size, | ||
| 260 | sample_batches=sample_batches | ||
| 261 | ) | ||
| 262 | |||
| 263 | if setup.accelerator.is_main_process: | ||
| 264 | setup.accelerator.init_trackers("textual_inversion") | ||
| 265 | |||
| 266 | train_loop( | ||
| 267 | accelerator=setup.accelerator, | ||
| 268 | optimizer=optimizer, | ||
| 269 | lr_scheduler=lr_scheduler, | ||
| 270 | model=text_encoder, | ||
| 271 | checkpointer=checkpointer, | ||
| 272 | train_dataloader=setup.train_dataloader, | ||
| 273 | val_dataloader=setup.val_dataloader, | ||
| 274 | loss_step=loss_step_, | ||
| 275 | sample_frequency=sample_frequency, | ||
| 276 | sample_steps=sample_steps, | ||
| 277 | checkpoint_frequency=checkpoint_frequency, | ||
| 278 | global_step_offset=global_step_offset, | ||
| 279 | num_epochs=num_train_epochs, | ||
| 280 | on_log=on_log, | ||
| 281 | on_train=on_train, | ||
| 282 | on_after_optimize=on_after_optimize, | ||
| 283 | on_eval=on_eval | ||
| 284 | ) | ||
