diff options
Diffstat (limited to 'training/strategy')
-rw-r--r-- | training/strategy/dreambooth.py | 14 | ||||
-rw-r--r-- | training/strategy/ti.py | 22 |
2 files changed, 34 insertions, 2 deletions
diff --git a/training/strategy/dreambooth.py b/training/strategy/dreambooth.py index f57e736..1277939 100644 --- a/training/strategy/dreambooth.py +++ b/training/strategy/dreambooth.py | |||
@@ -6,6 +6,7 @@ from pathlib import Path | |||
6 | import itertools | 6 | import itertools |
7 | 7 | ||
8 | import torch | 8 | import torch |
9 | import torch.nn as nn | ||
9 | from torch.utils.data import DataLoader | 10 | from torch.utils.data import DataLoader |
10 | 11 | ||
11 | from accelerate import Accelerator | 12 | from accelerate import Accelerator |
@@ -186,7 +187,18 @@ def dreambooth_strategy_callbacks( | |||
186 | ) | 187 | ) |
187 | 188 | ||
188 | 189 | ||
190 | def dreambooth_prepare( | ||
191 | accelerator: Accelerator, | ||
192 | text_encoder: CLIPTextModel, | ||
193 | unet: UNet2DConditionModel, | ||
194 | *args | ||
195 | ): | ||
196 | prep = [text_encoder, unet] + list(args) | ||
197 | text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare(*prep) | ||
198 | return text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler | ||
199 | |||
200 | |||
189 | dreambooth_strategy = TrainingStrategy( | 201 | dreambooth_strategy = TrainingStrategy( |
190 | callbacks=dreambooth_strategy_callbacks, | 202 | callbacks=dreambooth_strategy_callbacks, |
191 | prepare_unet=True | 203 | prepare=dreambooth_prepare |
192 | ) | 204 | ) |
diff --git a/training/strategy/ti.py b/training/strategy/ti.py index e922954..6a76f98 100644 --- a/training/strategy/ti.py +++ b/training/strategy/ti.py | |||
@@ -5,6 +5,7 @@ from contextlib import contextmanager, nullcontext | |||
5 | from pathlib import Path | 5 | from pathlib import Path |
6 | 6 | ||
7 | import torch | 7 | import torch |
8 | import torch.nn as nn | ||
8 | from torch.utils.data import DataLoader | 9 | from torch.utils.data import DataLoader |
9 | 10 | ||
10 | from accelerate import Accelerator | 11 | from accelerate import Accelerator |
@@ -94,7 +95,7 @@ def textual_inversion_strategy_callbacks( | |||
94 | return nullcontext() | 95 | return nullcontext() |
95 | 96 | ||
96 | def on_model(): | 97 | def on_model(): |
97 | return text_encoder | 98 | return text_encoder.text_model.embeddings.temp_token_embedding |
98 | 99 | ||
99 | def on_prepare(): | 100 | def on_prepare(): |
100 | text_encoder.text_model.embeddings.temp_token_embedding.requires_grad_(True) | 101 | text_encoder.text_model.embeddings.temp_token_embedding.requires_grad_(True) |
@@ -163,6 +164,25 @@ def textual_inversion_strategy_callbacks( | |||
163 | ) | 164 | ) |
164 | 165 | ||
165 | 166 | ||
167 | def textual_inversion_prepare( | ||
168 | accelerator: Accelerator, | ||
169 | text_encoder: CLIPTextModel, | ||
170 | unet: UNet2DConditionModel, | ||
171 | *args | ||
172 | ): | ||
173 | weight_dtype = torch.float32 | ||
174 | if accelerator.state.mixed_precision == "fp16": | ||
175 | weight_dtype = torch.float16 | ||
176 | elif accelerator.state.mixed_precision == "bf16": | ||
177 | weight_dtype = torch.bfloat16 | ||
178 | |||
179 | prep = [text_encoder] + list(args) | ||
180 | text_encoder, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare(*prep) | ||
181 | unet.to(accelerator.device, dtype=weight_dtype) | ||
182 | return text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler | ||
183 | |||
184 | |||
166 | textual_inversion_strategy = TrainingStrategy( | 185 | textual_inversion_strategy = TrainingStrategy( |
167 | callbacks=textual_inversion_strategy_callbacks, | 186 | callbacks=textual_inversion_strategy_callbacks, |
187 | prepare=textual_inversion_prepare, | ||
168 | ) | 188 | ) |