diff options
Diffstat (limited to 'training/strategy')
| -rw-r--r-- | training/strategy/ti.py | 164 |
1 files changed, 164 insertions, 0 deletions
diff --git a/training/strategy/ti.py b/training/strategy/ti.py new file mode 100644 index 0000000..83dc566 --- /dev/null +++ b/training/strategy/ti.py | |||
| @@ -0,0 +1,164 @@ | |||
| 1 | from contextlib import nullcontext | ||
| 2 | from typing import Optional | ||
| 3 | from functools import partial | ||
| 4 | from contextlib import contextmanager, nullcontext | ||
| 5 | from pathlib import Path | ||
| 6 | |||
| 7 | import torch | ||
| 8 | from torch.utils.data import DataLoader | ||
| 9 | |||
| 10 | from accelerate import Accelerator | ||
| 11 | from transformers import CLIPTextModel | ||
| 12 | from diffusers import AutoencoderKL, UNet2DConditionModel, DPMSolverMultistepScheduler | ||
| 13 | |||
| 14 | from slugify import slugify | ||
| 15 | |||
| 16 | from models.clip.tokenizer import MultiCLIPTokenizer | ||
| 17 | from training.util import EMAModel | ||
| 18 | from training.functional import save_samples | ||
| 19 | |||
| 20 | |||
| 21 | def textual_inversion_strategy( | ||
| 22 | accelerator: Accelerator, | ||
| 23 | unet: UNet2DConditionModel, | ||
| 24 | text_encoder: CLIPTextModel, | ||
| 25 | tokenizer: MultiCLIPTokenizer, | ||
| 26 | vae: AutoencoderKL, | ||
| 27 | sample_scheduler: DPMSolverMultistepScheduler, | ||
| 28 | train_dataloader: DataLoader, | ||
| 29 | val_dataloader: DataLoader, | ||
| 30 | dtype: torch.dtype, | ||
| 31 | output_dir: Path, | ||
| 32 | seed: int, | ||
| 33 | placeholder_tokens: list[str], | ||
| 34 | placeholder_token_ids: list[list[int]], | ||
| 35 | learning_rate: float, | ||
| 36 | gradient_checkpointing: bool = False, | ||
| 37 | use_emb_decay: bool = False, | ||
| 38 | emb_decay_target: float = 0.4, | ||
| 39 | emb_decay_factor: float = 1, | ||
| 40 | emb_decay_start: float = 1e-4, | ||
| 41 | use_ema: bool = False, | ||
| 42 | ema_inv_gamma: float = 1.0, | ||
| 43 | ema_power: int = 1, | ||
| 44 | ema_max_decay: float = 0.9999, | ||
| 45 | sample_batch_size: int = 1, | ||
| 46 | sample_num_batches: int = 1, | ||
| 47 | sample_num_steps: int = 20, | ||
| 48 | sample_guidance_scale: float = 7.5, | ||
| 49 | sample_image_size: Optional[int] = None, | ||
| 50 | ): | ||
| 51 | save_samples_ = partial( | ||
| 52 | save_samples, | ||
| 53 | accelerator=accelerator, | ||
| 54 | unet=unet, | ||
| 55 | text_encoder=text_encoder, | ||
| 56 | tokenizer=tokenizer, | ||
| 57 | vae=vae, | ||
| 58 | sample_scheduler=sample_scheduler, | ||
| 59 | train_dataloader=train_dataloader, | ||
| 60 | val_dataloader=val_dataloader, | ||
| 61 | dtype=dtype, | ||
| 62 | output_dir=output_dir, | ||
| 63 | seed=seed, | ||
| 64 | batch_size=sample_batch_size, | ||
| 65 | num_batches=sample_num_batches, | ||
| 66 | num_steps=sample_num_steps, | ||
| 67 | guidance_scale=sample_guidance_scale, | ||
| 68 | image_size=sample_image_size, | ||
| 69 | ) | ||
| 70 | |||
| 71 | if use_ema: | ||
| 72 | ema_embeddings = EMAModel( | ||
| 73 | text_encoder.text_model.embeddings.temp_token_embedding.parameters(), | ||
| 74 | inv_gamma=ema_inv_gamma, | ||
| 75 | power=ema_power, | ||
| 76 | max_value=ema_max_decay, | ||
| 77 | ) | ||
| 78 | else: | ||
| 79 | ema_embeddings = None | ||
| 80 | |||
| 81 | def on_prepare(): | ||
| 82 | text_encoder.text_model.embeddings.temp_token_embedding.requires_grad_(True) | ||
| 83 | |||
| 84 | if use_ema: | ||
| 85 | ema_embeddings.to(accelerator.device) | ||
| 86 | |||
| 87 | if gradient_checkpointing: | ||
| 88 | unet.train() | ||
| 89 | |||
| 90 | @contextmanager | ||
| 91 | def on_train(epoch: int): | ||
| 92 | try: | ||
| 93 | tokenizer.train() | ||
| 94 | yield | ||
| 95 | finally: | ||
| 96 | pass | ||
| 97 | |||
| 98 | @contextmanager | ||
| 99 | def on_eval(): | ||
| 100 | try: | ||
| 101 | tokenizer.eval() | ||
| 102 | |||
| 103 | ema_context = ema_embeddings.apply_temporary( | ||
| 104 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) if use_ema else nullcontext() | ||
| 105 | |||
| 106 | with ema_context: | ||
| 107 | yield | ||
| 108 | finally: | ||
| 109 | pass | ||
| 110 | |||
| 111 | @torch.no_grad() | ||
| 112 | def on_after_optimize(lr: float): | ||
| 113 | if use_emb_decay: | ||
| 114 | text_encoder.text_model.embeddings.normalize( | ||
| 115 | emb_decay_target, | ||
| 116 | min(1.0, max(0.0, emb_decay_factor * ((lr - emb_decay_start) / (learning_rate - emb_decay_start)))) | ||
| 117 | ) | ||
| 118 | |||
| 119 | if use_ema: | ||
| 120 | ema_embeddings.step(text_encoder.text_model.embeddings.temp_token_embedding.parameters()) | ||
| 121 | |||
| 122 | def on_log(): | ||
| 123 | if use_ema: | ||
| 124 | return {"ema_decay": ema_embeddings.decay} | ||
| 125 | return {} | ||
| 126 | |||
| 127 | @torch.no_grad() | ||
| 128 | def on_checkpoint(step, postfix): | ||
| 129 | print(f"Saving checkpoint for step {step}...") | ||
| 130 | |||
| 131 | checkpoints_path = output_dir.joinpath("checkpoints") | ||
| 132 | checkpoints_path.mkdir(parents=True, exist_ok=True) | ||
| 133 | |||
| 134 | text_encoder = accelerator.unwrap_model(text_encoder) | ||
| 135 | |||
| 136 | ema_context = ema_embeddings.apply_temporary( | ||
| 137 | text_encoder.text_model.embeddings.temp_token_embedding.parameters() | ||
| 138 | ) if ema_embeddings is not None else nullcontext() | ||
| 139 | |||
| 140 | with ema_context: | ||
| 141 | for (token, ids) in zip(placeholder_tokens, placeholder_token_ids): | ||
| 142 | text_encoder.text_model.embeddings.save_embed( | ||
| 143 | ids, | ||
| 144 | checkpoints_path.joinpath(f"{slugify(token)}_{step}_{postfix}.bin") | ||
| 145 | ) | ||
| 146 | |||
| 147 | @torch.no_grad() | ||
| 148 | def on_sample(step): | ||
| 149 | ema_context = ema_embeddings.apply_temporary( | ||
| 150 | text_encoder.text_model.embeddings.temp_token_embedding.parameters() | ||
| 151 | ) if ema_embeddings is not None else nullcontext() | ||
| 152 | |||
| 153 | with ema_context: | ||
| 154 | save_samples_(step=step) | ||
| 155 | |||
| 156 | return { | ||
| 157 | "on_prepare": on_prepare, | ||
| 158 | "on_train": on_train, | ||
| 159 | "on_eval": on_eval, | ||
| 160 | "on_after_optimize": on_after_optimize, | ||
| 161 | "on_log": on_log, | ||
| 162 | "on_checkpoint": on_checkpoint, | ||
| 163 | "on_sample": on_sample, | ||
| 164 | } | ||
