diff options
Diffstat (limited to 'training/strategy')
-rw-r--r-- | training/strategy/ti.py | 54 |
1 files changed, 26 insertions, 28 deletions
diff --git a/training/strategy/ti.py b/training/strategy/ti.py index 6f8384f..753dce0 100644 --- a/training/strategy/ti.py +++ b/training/strategy/ti.py | |||
@@ -27,7 +27,6 @@ def textual_inversion_strategy( | |||
27 | sample_scheduler: DPMSolverMultistepScheduler, | 27 | sample_scheduler: DPMSolverMultistepScheduler, |
28 | train_dataloader: DataLoader, | 28 | train_dataloader: DataLoader, |
29 | val_dataloader: DataLoader, | 29 | val_dataloader: DataLoader, |
30 | dtype: torch.dtype, | ||
31 | output_dir: Path, | 30 | output_dir: Path, |
32 | seed: int, | 31 | seed: int, |
33 | placeholder_tokens: list[str], | 32 | placeholder_tokens: list[str], |
@@ -48,6 +47,12 @@ def textual_inversion_strategy( | |||
48 | sample_guidance_scale: float = 7.5, | 47 | sample_guidance_scale: float = 7.5, |
49 | sample_image_size: Optional[int] = None, | 48 | sample_image_size: Optional[int] = None, |
50 | ): | 49 | ): |
50 | weight_dtype = torch.float32 | ||
51 | if accelerator.state.mixed_precision == "fp16": | ||
52 | weight_dtype = torch.float16 | ||
53 | elif accelerator.state.mixed_precision == "bf16": | ||
54 | weight_dtype = torch.bfloat16 | ||
55 | |||
51 | save_samples_ = partial( | 56 | save_samples_ = partial( |
52 | save_samples, | 57 | save_samples, |
53 | accelerator=accelerator, | 58 | accelerator=accelerator, |
@@ -58,7 +63,7 @@ def textual_inversion_strategy( | |||
58 | sample_scheduler=sample_scheduler, | 63 | sample_scheduler=sample_scheduler, |
59 | train_dataloader=train_dataloader, | 64 | train_dataloader=train_dataloader, |
60 | val_dataloader=val_dataloader, | 65 | val_dataloader=val_dataloader, |
61 | dtype=dtype, | 66 | dtype=weight_dtype, |
62 | output_dir=output_dir, | 67 | output_dir=output_dir, |
63 | seed=seed, | 68 | seed=seed, |
64 | batch_size=sample_batch_size, | 69 | batch_size=sample_batch_size, |
@@ -78,6 +83,17 @@ def textual_inversion_strategy( | |||
78 | else: | 83 | else: |
79 | ema_embeddings = None | 84 | ema_embeddings = None |
80 | 85 | ||
86 | def ema_context(): | ||
87 | if use_ema: | ||
88 | return ema_embeddings.apply_temporary( | ||
89 | text_encoder.text_model.embeddings.temp_token_embedding.parameters() | ||
90 | ) | ||
91 | else: | ||
92 | return nullcontext() | ||
93 | |||
94 | def on_model(): | ||
95 | return text_encoder | ||
96 | |||
81 | def on_prepare(): | 97 | def on_prepare(): |
82 | text_encoder.text_model.embeddings.temp_token_embedding.requires_grad_(True) | 98 | text_encoder.text_model.embeddings.temp_token_embedding.requires_grad_(True) |
83 | 99 | ||
@@ -89,24 +105,15 @@ def textual_inversion_strategy( | |||
89 | 105 | ||
90 | @contextmanager | 106 | @contextmanager |
91 | def on_train(epoch: int): | 107 | def on_train(epoch: int): |
92 | try: | 108 | tokenizer.train() |
93 | tokenizer.train() | 109 | yield |
94 | yield | ||
95 | finally: | ||
96 | pass | ||
97 | 110 | ||
98 | @contextmanager | 111 | @contextmanager |
99 | def on_eval(): | 112 | def on_eval(): |
100 | try: | 113 | tokenizer.eval() |
101 | tokenizer.eval() | ||
102 | 114 | ||
103 | ema_context = ema_embeddings.apply_temporary( | 115 | with ema_context(): |
104 | text_encoder.text_model.embeddings.temp_token_embedding.parameters()) if use_ema else nullcontext() | 116 | yield |
105 | |||
106 | with ema_context: | ||
107 | yield | ||
108 | finally: | ||
109 | pass | ||
110 | 117 | ||
111 | @torch.no_grad() | 118 | @torch.no_grad() |
112 | def on_after_optimize(lr: float): | 119 | def on_after_optimize(lr: float): |
@@ -131,13 +138,7 @@ def textual_inversion_strategy( | |||
131 | checkpoints_path = output_dir.joinpath("checkpoints") | 138 | checkpoints_path = output_dir.joinpath("checkpoints") |
132 | checkpoints_path.mkdir(parents=True, exist_ok=True) | 139 | checkpoints_path.mkdir(parents=True, exist_ok=True) |
133 | 140 | ||
134 | text_encoder = accelerator.unwrap_model(text_encoder) | 141 | with ema_context(): |
135 | |||
136 | ema_context = ema_embeddings.apply_temporary( | ||
137 | text_encoder.text_model.embeddings.temp_token_embedding.parameters() | ||
138 | ) if ema_embeddings is not None else nullcontext() | ||
139 | |||
140 | with ema_context: | ||
141 | for (token, ids) in zip(placeholder_tokens, placeholder_token_ids): | 142 | for (token, ids) in zip(placeholder_tokens, placeholder_token_ids): |
142 | text_encoder.text_model.embeddings.save_embed( | 143 | text_encoder.text_model.embeddings.save_embed( |
143 | ids, | 144 | ids, |
@@ -146,15 +147,12 @@ def textual_inversion_strategy( | |||
146 | 147 | ||
147 | @torch.no_grad() | 148 | @torch.no_grad() |
148 | def on_sample(step): | 149 | def on_sample(step): |
149 | ema_context = ema_embeddings.apply_temporary( | 150 | with ema_context(): |
150 | text_encoder.text_model.embeddings.temp_token_embedding.parameters() | ||
151 | ) if ema_embeddings is not None else nullcontext() | ||
152 | |||
153 | with ema_context: | ||
154 | save_samples_(step=step) | 151 | save_samples_(step=step) |
155 | 152 | ||
156 | return TrainingCallbacks( | 153 | return TrainingCallbacks( |
157 | on_prepare=on_prepare, | 154 | on_prepare=on_prepare, |
155 | on_model=on_model, | ||
158 | on_train=on_train, | 156 | on_train=on_train, |
159 | on_eval=on_eval, | 157 | on_eval=on_eval, |
160 | on_after_optimize=on_after_optimize, | 158 | on_after_optimize=on_after_optimize, |