diff options
Diffstat (limited to 'training/strategy')
-rw-r--r-- | training/strategy/dreambooth.py | 8 | ||||
-rw-r--r-- | training/strategy/lora.py | 2 | ||||
-rw-r--r-- | training/strategy/ti.py | 4 |
3 files changed, 7 insertions, 7 deletions
diff --git a/training/strategy/dreambooth.py b/training/strategy/dreambooth.py index 8aaed3a..d697554 100644 --- a/training/strategy/dreambooth.py +++ b/training/strategy/dreambooth.py | |||
@@ -144,8 +144,8 @@ def dreambooth_strategy_callbacks( | |||
144 | 144 | ||
145 | print("Saving model...") | 145 | print("Saving model...") |
146 | 146 | ||
147 | unet_ = accelerator.unwrap_model(unet) | 147 | unet_ = accelerator.unwrap_model(unet, False) |
148 | text_encoder_ = accelerator.unwrap_model(text_encoder) | 148 | text_encoder_ = accelerator.unwrap_model(text_encoder, False) |
149 | 149 | ||
150 | with ema_context(): | 150 | with ema_context(): |
151 | pipeline = VlpnStableDiffusion( | 151 | pipeline = VlpnStableDiffusion( |
@@ -167,8 +167,8 @@ def dreambooth_strategy_callbacks( | |||
167 | @torch.no_grad() | 167 | @torch.no_grad() |
168 | def on_sample(step): | 168 | def on_sample(step): |
169 | with ema_context(): | 169 | with ema_context(): |
170 | unet_ = accelerator.unwrap_model(unet) | 170 | unet_ = accelerator.unwrap_model(unet, False) |
171 | text_encoder_ = accelerator.unwrap_model(text_encoder) | 171 | text_encoder_ = accelerator.unwrap_model(text_encoder, False) |
172 | 172 | ||
173 | orig_unet_dtype = unet_.dtype | 173 | orig_unet_dtype = unet_.dtype |
174 | orig_text_encoder_dtype = text_encoder_.dtype | 174 | orig_text_encoder_dtype = text_encoder_.dtype |
diff --git a/training/strategy/lora.py b/training/strategy/lora.py index 4dd1100..ccec215 100644 --- a/training/strategy/lora.py +++ b/training/strategy/lora.py | |||
@@ -90,7 +90,7 @@ def lora_strategy_callbacks( | |||
90 | def on_checkpoint(step, postfix): | 90 | def on_checkpoint(step, postfix): |
91 | print(f"Saving checkpoint for step {step}...") | 91 | print(f"Saving checkpoint for step {step}...") |
92 | 92 | ||
93 | unet_ = accelerator.unwrap_model(unet) | 93 | unet_ = accelerator.unwrap_model(unet, False) |
94 | unet_.save_attn_procs(checkpoint_output_dir / f"{step}_{postfix}") | 94 | unet_.save_attn_procs(checkpoint_output_dir / f"{step}_{postfix}") |
95 | del unet_ | 95 | del unet_ |
96 | 96 | ||
diff --git a/training/strategy/ti.py b/training/strategy/ti.py index 0de3cb0..66d3129 100644 --- a/training/strategy/ti.py +++ b/training/strategy/ti.py | |||
@@ -144,8 +144,8 @@ def textual_inversion_strategy_callbacks( | |||
144 | @torch.no_grad() | 144 | @torch.no_grad() |
145 | def on_sample(step): | 145 | def on_sample(step): |
146 | with ema_context(): | 146 | with ema_context(): |
147 | unet_ = accelerator.unwrap_model(unet) | 147 | unet_ = accelerator.unwrap_model(unet, False) |
148 | text_encoder_ = accelerator.unwrap_model(text_encoder) | 148 | text_encoder_ = accelerator.unwrap_model(text_encoder, False) |
149 | 149 | ||
150 | orig_unet_dtype = unet_.dtype | 150 | orig_unet_dtype = unet_.dtype |
151 | orig_text_encoder_dtype = text_encoder_.dtype | 151 | orig_text_encoder_dtype = text_encoder_.dtype |