diff options
Diffstat (limited to 'training/strategy')
| -rw-r--r-- | training/strategy/lora.py | 2 | ||||
| -rw-r--r-- | training/strategy/ti.py | 12 |
2 files changed, 7 insertions, 7 deletions
diff --git a/training/strategy/lora.py b/training/strategy/lora.py index cfdc504..ae85401 100644 --- a/training/strategy/lora.py +++ b/training/strategy/lora.py | |||
| @@ -93,7 +93,7 @@ def lora_strategy_callbacks( | |||
| 93 | if use_emb_decay: | 93 | if use_emb_decay: |
| 94 | params = [ | 94 | params = [ |
| 95 | p | 95 | p |
| 96 | for p in text_encoder.text_model.embeddings.token_override_embedding.params | 96 | for p in text_encoder.text_model.embeddings.token_override_embedding.parameters() |
| 97 | if p.grad is not None | 97 | if p.grad is not None |
| 98 | ] | 98 | ] |
| 99 | return torch.stack(params) if len(params) != 0 else None | 99 | return torch.stack(params) if len(params) != 0 else None |
diff --git a/training/strategy/ti.py b/training/strategy/ti.py index 720ebf3..289d6bd 100644 --- a/training/strategy/ti.py +++ b/training/strategy/ti.py | |||
| @@ -72,7 +72,7 @@ def textual_inversion_strategy_callbacks( | |||
| 72 | 72 | ||
| 73 | if use_ema: | 73 | if use_ema: |
| 74 | ema_embeddings = EMAModel( | 74 | ema_embeddings = EMAModel( |
| 75 | text_encoder.text_model.embeddings.token_override_embedding.params.parameters(), | 75 | text_encoder.text_model.embeddings.token_override_embedding.parameters(), |
| 76 | inv_gamma=ema_inv_gamma, | 76 | inv_gamma=ema_inv_gamma, |
| 77 | power=ema_power, | 77 | power=ema_power, |
| 78 | max_value=ema_max_decay, | 78 | max_value=ema_max_decay, |
| @@ -84,20 +84,20 @@ def textual_inversion_strategy_callbacks( | |||
| 84 | def ema_context(): | 84 | def ema_context(): |
| 85 | if ema_embeddings is not None: | 85 | if ema_embeddings is not None: |
| 86 | return ema_embeddings.apply_temporary( | 86 | return ema_embeddings.apply_temporary( |
| 87 | text_encoder.text_model.embeddings.token_override_embedding.params.parameters() | 87 | text_encoder.text_model.embeddings.token_override_embedding.parameters() |
| 88 | ) | 88 | ) |
| 89 | else: | 89 | else: |
| 90 | return nullcontext() | 90 | return nullcontext() |
| 91 | 91 | ||
| 92 | @contextmanager | 92 | @contextmanager |
| 93 | def on_train(epoch: int): | 93 | def on_train(epoch: int): |
| 94 | text_encoder.text_model.embeddings.token_override_embedding.params.train() | 94 | text_encoder.train() |
| 95 | tokenizer.train() | 95 | tokenizer.train() |
| 96 | yield | 96 | yield |
| 97 | 97 | ||
| 98 | @contextmanager | 98 | @contextmanager |
| 99 | def on_eval(): | 99 | def on_eval(): |
| 100 | text_encoder.text_model.embeddings.token_override_embedding.params.eval() | 100 | text_encoder.eval() |
| 101 | tokenizer.eval() | 101 | tokenizer.eval() |
| 102 | 102 | ||
| 103 | with ema_context(): | 103 | with ema_context(): |
| @@ -108,7 +108,7 @@ def textual_inversion_strategy_callbacks( | |||
| 108 | if use_emb_decay: | 108 | if use_emb_decay: |
| 109 | params = [ | 109 | params = [ |
| 110 | p | 110 | p |
| 111 | for p in text_encoder.text_model.embeddings.token_override_embedding.params | 111 | for p in text_encoder.text_model.embeddings.token_override_embedding.parameters() |
| 112 | if p.grad is not None | 112 | if p.grad is not None |
| 113 | ] | 113 | ] |
| 114 | return torch.stack(params) if len(params) != 0 else None | 114 | return torch.stack(params) if len(params) != 0 else None |
| @@ -116,7 +116,7 @@ def textual_inversion_strategy_callbacks( | |||
| 116 | @torch.no_grad() | 116 | @torch.no_grad() |
| 117 | def on_after_optimize(w, lrs: dict[str, float]): | 117 | def on_after_optimize(w, lrs: dict[str, float]): |
| 118 | if ema_embeddings is not None: | 118 | if ema_embeddings is not None: |
| 119 | ema_embeddings.step(text_encoder.text_model.embeddings.token_override_embedding.params.parameters()) | 119 | ema_embeddings.step(text_encoder.text_model.embeddings.token_override_embedding.parameters()) |
| 120 | 120 | ||
| 121 | if use_emb_decay and w is not None: | 121 | if use_emb_decay and w is not None: |
| 122 | lr = lrs["emb"] or lrs["0"] | 122 | lr = lrs["emb"] or lrs["0"] |
