diff options
Diffstat (limited to 'training/strategy')
| -rw-r--r-- | training/strategy/dreambooth.py | 27 | ||||
| -rw-r--r-- | training/strategy/lora.py | 2 | ||||
| -rw-r--r-- | training/strategy/ti.py | 25 |
3 files changed, 26 insertions, 28 deletions
diff --git a/training/strategy/dreambooth.py b/training/strategy/dreambooth.py index 42624cd..7cdfc7f 100644 --- a/training/strategy/dreambooth.py +++ b/training/strategy/dreambooth.py | |||
| @@ -113,7 +113,7 @@ def dreambooth_strategy_callbacks( | |||
| 113 | accelerator.clip_grad_norm_(itertools.chain(*params_to_clip), max_grad_norm) | 113 | accelerator.clip_grad_norm_(itertools.chain(*params_to_clip), max_grad_norm) |
| 114 | 114 | ||
| 115 | @torch.no_grad() | 115 | @torch.no_grad() |
| 116 | def on_after_optimize(_, lr: float): | 116 | def on_after_optimize(_, lrs: dict[str, float]): |
| 117 | if ema_unet is not None: | 117 | if ema_unet is not None: |
| 118 | ema_unet.step(unet.parameters()) | 118 | ema_unet.step(unet.parameters()) |
| 119 | 119 | ||
| @@ -149,25 +149,24 @@ def dreambooth_strategy_callbacks( | |||
| 149 | if torch.cuda.is_available(): | 149 | if torch.cuda.is_available(): |
| 150 | torch.cuda.empty_cache() | 150 | torch.cuda.empty_cache() |
| 151 | 151 | ||
| 152 | @torch.no_grad() | 152 | @on_eval() |
| 153 | def on_sample(step): | 153 | def on_sample(step): |
| 154 | with ema_context(): | 154 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) |
| 155 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) | 155 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) |
| 156 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) | ||
| 157 | 156 | ||
| 158 | orig_unet_dtype = unet_.dtype | 157 | orig_unet_dtype = unet_.dtype |
| 159 | orig_text_encoder_dtype = text_encoder_.dtype | 158 | orig_text_encoder_dtype = text_encoder_.dtype |
| 160 | 159 | ||
| 161 | unet_.to(dtype=weight_dtype) | 160 | unet_.to(dtype=weight_dtype) |
| 162 | text_encoder_.to(dtype=weight_dtype) | 161 | text_encoder_.to(dtype=weight_dtype) |
| 163 | 162 | ||
| 164 | save_samples_(step=step, unet=unet_, text_encoder=text_encoder_) | 163 | save_samples_(step=step, unet=unet_, text_encoder=text_encoder_) |
| 165 | 164 | ||
| 166 | unet_.to(dtype=orig_unet_dtype) | 165 | unet_.to(dtype=orig_unet_dtype) |
| 167 | text_encoder_.to(dtype=orig_text_encoder_dtype) | 166 | text_encoder_.to(dtype=orig_text_encoder_dtype) |
| 168 | 167 | ||
| 169 | del unet_ | 168 | del unet_ |
| 170 | del text_encoder_ | 169 | del text_encoder_ |
| 171 | 170 | ||
| 172 | if torch.cuda.is_available(): | 171 | if torch.cuda.is_available(): |
| 173 | torch.cuda.empty_cache() | 172 | torch.cuda.empty_cache() |
diff --git a/training/strategy/lora.py b/training/strategy/lora.py index 73ec8f2..0f72a17 100644 --- a/training/strategy/lora.py +++ b/training/strategy/lora.py | |||
| @@ -146,7 +146,7 @@ def lora_strategy_callbacks( | |||
| 146 | if torch.cuda.is_available(): | 146 | if torch.cuda.is_available(): |
| 147 | torch.cuda.empty_cache() | 147 | torch.cuda.empty_cache() |
| 148 | 148 | ||
| 149 | @torch.no_grad() | 149 | @on_eval() |
| 150 | def on_sample(step): | 150 | def on_sample(step): |
| 151 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) | 151 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) |
| 152 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) | 152 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) |
diff --git a/training/strategy/ti.py b/training/strategy/ti.py index 363c3f9..f00045f 100644 --- a/training/strategy/ti.py +++ b/training/strategy/ti.py | |||
| @@ -142,25 +142,24 @@ def textual_inversion_strategy_callbacks( | |||
| 142 | checkpoint_output_dir / f"{slugify(token)}_{step}_{postfix}.bin" | 142 | checkpoint_output_dir / f"{slugify(token)}_{step}_{postfix}.bin" |
| 143 | ) | 143 | ) |
| 144 | 144 | ||
| 145 | @torch.no_grad() | 145 | @on_eval() |
| 146 | def on_sample(step): | 146 | def on_sample(step): |
| 147 | with ema_context(): | 147 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) |
| 148 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) | 148 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) |
| 149 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) | ||
| 150 | 149 | ||
| 151 | orig_unet_dtype = unet_.dtype | 150 | orig_unet_dtype = unet_.dtype |
| 152 | orig_text_encoder_dtype = text_encoder_.dtype | 151 | orig_text_encoder_dtype = text_encoder_.dtype |
| 153 | 152 | ||
| 154 | unet_.to(dtype=weight_dtype) | 153 | unet_.to(dtype=weight_dtype) |
| 155 | text_encoder_.to(dtype=weight_dtype) | 154 | text_encoder_.to(dtype=weight_dtype) |
| 156 | 155 | ||
| 157 | save_samples_(step=step, unet=unet_, text_encoder=text_encoder_) | 156 | save_samples_(step=step, unet=unet_, text_encoder=text_encoder_) |
| 158 | 157 | ||
| 159 | unet_.to(dtype=orig_unet_dtype) | 158 | unet_.to(dtype=orig_unet_dtype) |
| 160 | text_encoder_.to(dtype=orig_text_encoder_dtype) | 159 | text_encoder_.to(dtype=orig_text_encoder_dtype) |
| 161 | 160 | ||
| 162 | del unet_ | 161 | del unet_ |
| 163 | del text_encoder_ | 162 | del text_encoder_ |
| 164 | 163 | ||
| 165 | if torch.cuda.is_available(): | 164 | if torch.cuda.is_available(): |
| 166 | torch.cuda.empty_cache() | 165 | torch.cuda.empty_cache() |
