diff options
Diffstat (limited to 'training/strategy')
| -rw-r--r-- | training/strategy/lora.py | 70 |
1 files changed, 59 insertions, 11 deletions
diff --git a/training/strategy/lora.py b/training/strategy/lora.py index cab5e4c..aa75bec 100644 --- a/training/strategy/lora.py +++ b/training/strategy/lora.py | |||
| @@ -2,6 +2,7 @@ from typing import Optional | |||
| 2 | from functools import partial | 2 | from functools import partial |
| 3 | from contextlib import contextmanager | 3 | from contextlib import contextmanager |
| 4 | from pathlib import Path | 4 | from pathlib import Path |
| 5 | import itertools | ||
| 5 | 6 | ||
| 6 | import torch | 7 | import torch |
| 7 | from torch.utils.data import DataLoader | 8 | from torch.utils.data import DataLoader |
| @@ -9,12 +10,18 @@ from torch.utils.data import DataLoader | |||
| 9 | from accelerate import Accelerator | 10 | from accelerate import Accelerator |
| 10 | from transformers import CLIPTextModel | 11 | from transformers import CLIPTextModel |
| 11 | from diffusers import AutoencoderKL, UNet2DConditionModel, DPMSolverMultistepScheduler | 12 | from diffusers import AutoencoderKL, UNet2DConditionModel, DPMSolverMultistepScheduler |
| 12 | from diffusers.loaders import AttnProcsLayers | 13 | from peft import LoraConfig, LoraModel, get_peft_model_state_dict |
| 14 | from peft.tuners.lora import mark_only_lora_as_trainable | ||
| 13 | 15 | ||
| 14 | from models.clip.tokenizer import MultiCLIPTokenizer | 16 | from models.clip.tokenizer import MultiCLIPTokenizer |
| 15 | from training.functional import TrainingStrategy, TrainingCallbacks, save_samples | 17 | from training.functional import TrainingStrategy, TrainingCallbacks, save_samples |
| 16 | 18 | ||
| 17 | 19 | ||
| 20 | # https://github.com/huggingface/peft/blob/main/examples/lora_dreambooth/train_dreambooth.py | ||
| 21 | UNET_TARGET_MODULES = ["to_q", "to_v", "query", "value"] | ||
| 22 | TEXT_ENCODER_TARGET_MODULES = ["q_proj", "v_proj"] | ||
| 23 | |||
| 24 | |||
| 18 | def lora_strategy_callbacks( | 25 | def lora_strategy_callbacks( |
| 19 | accelerator: Accelerator, | 26 | accelerator: Accelerator, |
| 20 | unet: UNet2DConditionModel, | 27 | unet: UNet2DConditionModel, |
| @@ -27,7 +34,6 @@ def lora_strategy_callbacks( | |||
| 27 | sample_output_dir: Path, | 34 | sample_output_dir: Path, |
| 28 | checkpoint_output_dir: Path, | 35 | checkpoint_output_dir: Path, |
| 29 | seed: int, | 36 | seed: int, |
| 30 | lora_layers: AttnProcsLayers, | ||
| 31 | max_grad_norm: float = 1.0, | 37 | max_grad_norm: float = 1.0, |
| 32 | sample_batch_size: int = 1, | 38 | sample_batch_size: int = 1, |
| 33 | sample_num_batches: int = 1, | 39 | sample_num_batches: int = 1, |
| @@ -57,7 +63,8 @@ def lora_strategy_callbacks( | |||
| 57 | ) | 63 | ) |
| 58 | 64 | ||
| 59 | def on_prepare(): | 65 | def on_prepare(): |
| 60 | lora_layers.requires_grad_(True) | 66 | mark_only_lora_as_trainable(unet.model, unet.peft_config.bias) |
| 67 | mark_only_lora_as_trainable(text_encoder.model, text_encoder.peft_config.bias) | ||
| 61 | 68 | ||
| 62 | def on_accum_model(): | 69 | def on_accum_model(): |
| 63 | return unet | 70 | return unet |
| @@ -73,24 +80,44 @@ def lora_strategy_callbacks( | |||
| 73 | yield | 80 | yield |
| 74 | 81 | ||
| 75 | def on_before_optimize(lr: float, epoch: int): | 82 | def on_before_optimize(lr: float, epoch: int): |
| 76 | accelerator.clip_grad_norm_(lora_layers.parameters(), max_grad_norm) | 83 | accelerator.clip_grad_norm_( |
| 84 | itertools.chain(unet.parameters(), text_encoder.parameters()), | ||
| 85 | max_grad_norm | ||
| 86 | ) | ||
| 77 | 87 | ||
| 78 | @torch.no_grad() | 88 | @torch.no_grad() |
| 79 | def on_checkpoint(step, postfix): | 89 | def on_checkpoint(step, postfix): |
| 80 | print(f"Saving checkpoint for step {step}...") | 90 | print(f"Saving checkpoint for step {step}...") |
| 81 | 91 | ||
| 82 | unet_ = accelerator.unwrap_model(unet, False) | 92 | unet_ = accelerator.unwrap_model(unet, False) |
| 83 | unet_.save_attn_procs( | 93 | text_encoder_ = accelerator.unwrap_model(text_encoder, False) |
| 84 | checkpoint_output_dir / f"{step}_{postfix}", | 94 | |
| 85 | safe_serialization=True | 95 | lora_config = {} |
| 96 | state_dict = get_peft_model_state_dict(unet, state_dict=accelerator.get_state_dict(unet)) | ||
| 97 | lora_config["peft_config"] = unet.get_peft_config_as_dict(inference=True) | ||
| 98 | |||
| 99 | text_encoder_state_dict = get_peft_model_state_dict( | ||
| 100 | text_encoder, state_dict=accelerator.get_state_dict(text_encoder) | ||
| 86 | ) | 101 | ) |
| 102 | text_encoder_state_dict = {f"text_encoder_{k}": v for k, v in text_encoder_state_dict.items()} | ||
| 103 | state_dict.update(text_encoder_state_dict) | ||
| 104 | lora_config["text_encoder_peft_config"] = text_encoder.get_peft_config_as_dict(inference=True) | ||
| 105 | |||
| 106 | accelerator.print(state_dict) | ||
| 107 | accelerator.save(state_dict, checkpoint_output_dir / f"{step}_{postfix}.pt") | ||
| 108 | |||
| 87 | del unet_ | 109 | del unet_ |
| 110 | del text_encoder_ | ||
| 88 | 111 | ||
| 89 | @torch.no_grad() | 112 | @torch.no_grad() |
| 90 | def on_sample(step): | 113 | def on_sample(step): |
| 91 | unet_ = accelerator.unwrap_model(unet, False) | 114 | unet_ = accelerator.unwrap_model(unet, False) |
| 115 | text_encoder_ = accelerator.unwrap_model(text_encoder, False) | ||
| 116 | |||
| 92 | save_samples_(step=step, unet=unet_) | 117 | save_samples_(step=step, unet=unet_) |
| 118 | |||
| 93 | del unet_ | 119 | del unet_ |
| 120 | del text_encoder_ | ||
| 94 | 121 | ||
| 95 | if torch.cuda.is_available(): | 122 | if torch.cuda.is_available(): |
| 96 | torch.cuda.empty_cache() | 123 | torch.cuda.empty_cache() |
| @@ -114,13 +141,34 @@ def lora_prepare( | |||
| 114 | train_dataloader: DataLoader, | 141 | train_dataloader: DataLoader, |
| 115 | val_dataloader: Optional[DataLoader], | 142 | val_dataloader: Optional[DataLoader], |
| 116 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, | 143 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, |
| 117 | lora_layers: AttnProcsLayers, | 144 | lora_rank: int = 4, |
| 145 | lora_alpha: int = 32, | ||
| 146 | lora_dropout: float = 0, | ||
| 147 | lora_bias: str = "none", | ||
| 118 | **kwargs | 148 | **kwargs |
| 119 | ): | 149 | ): |
| 120 | lora_layers, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( | 150 | unet_config = LoraConfig( |
| 121 | lora_layers, optimizer, train_dataloader, val_dataloader, lr_scheduler) | 151 | r=lora_rank, |
| 152 | lora_alpha=lora_alpha, | ||
| 153 | target_modules=UNET_TARGET_MODULES, | ||
| 154 | lora_dropout=lora_dropout, | ||
| 155 | bias=lora_bias, | ||
| 156 | ) | ||
| 157 | unet = LoraModel(unet_config, unet) | ||
| 158 | |||
| 159 | text_encoder_config = LoraConfig( | ||
| 160 | r=lora_rank, | ||
| 161 | lora_alpha=lora_alpha, | ||
| 162 | target_modules=TEXT_ENCODER_TARGET_MODULES, | ||
| 163 | lora_dropout=lora_dropout, | ||
| 164 | bias=lora_bias, | ||
| 165 | ) | ||
| 166 | text_encoder = LoraModel(text_encoder_config, text_encoder) | ||
| 167 | |||
| 168 | text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare( | ||
| 169 | text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler) | ||
| 122 | 170 | ||
| 123 | return text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler, {"lora_layers": lora_layers} | 171 | return text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler, {} |
| 124 | 172 | ||
| 125 | 173 | ||
| 126 | lora_strategy = TrainingStrategy( | 174 | lora_strategy = TrainingStrategy( |
