diff options
Diffstat (limited to 'training')
-rw-r--r-- | training/lr.py | 34 |
1 files changed, 23 insertions, 11 deletions
diff --git a/training/lr.py b/training/lr.py index dd37baa..5343f24 100644 --- a/training/lr.py +++ b/training/lr.py | |||
@@ -1,20 +1,22 @@ | |||
1 | import matplotlib.pyplot as plt | ||
1 | import numpy as np | 2 | import numpy as np |
3 | import torch | ||
2 | from torch.optim.lr_scheduler import LambdaLR | 4 | from torch.optim.lr_scheduler import LambdaLR |
3 | from tqdm.auto import tqdm | 5 | from tqdm.auto import tqdm |
4 | import matplotlib.pyplot as plt | ||
5 | 6 | ||
6 | from training.util import AverageMeter | 7 | from training.util import AverageMeter |
7 | 8 | ||
8 | 9 | ||
9 | class LRFinder(): | 10 | class LRFinder(): |
10 | def __init__(self, accelerator, model, optimizer, train_dataloader, loss_fn): | 11 | def __init__(self, accelerator, model, optimizer, train_dataloader, val_dataloader, loss_fn): |
11 | self.accelerator = accelerator | 12 | self.accelerator = accelerator |
12 | self.model = model | 13 | self.model = model |
13 | self.optimizer = optimizer | 14 | self.optimizer = optimizer |
14 | self.train_dataloader = train_dataloader | 15 | self.train_dataloader = train_dataloader |
16 | self.val_dataloader = val_dataloader | ||
15 | self.loss_fn = loss_fn | 17 | self.loss_fn = loss_fn |
16 | 18 | ||
17 | def run(self, num_epochs=100, num_steps=1, smooth_f=0.05, diverge_th=5): | 19 | def run(self, num_epochs=100, num_train_steps=1, num_val_steps=1, smooth_f=0.05, diverge_th=5): |
18 | best_loss = None | 20 | best_loss = None |
19 | lrs = [] | 21 | lrs = [] |
20 | losses = [] | 22 | losses = [] |
@@ -22,7 +24,7 @@ class LRFinder(): | |||
22 | lr_scheduler = get_exponential_schedule(self.optimizer, num_epochs) | 24 | lr_scheduler = get_exponential_schedule(self.optimizer, num_epochs) |
23 | 25 | ||
24 | progress_bar = tqdm( | 26 | progress_bar = tqdm( |
25 | range(num_epochs * num_steps), | 27 | range(num_epochs * (num_train_steps + num_val_steps)), |
26 | disable=not self.accelerator.is_local_main_process, | 28 | disable=not self.accelerator.is_local_main_process, |
27 | dynamic_ncols=True | 29 | dynamic_ncols=True |
28 | ) | 30 | ) |
@@ -33,6 +35,8 @@ class LRFinder(): | |||
33 | 35 | ||
34 | avg_loss = AverageMeter() | 36 | avg_loss = AverageMeter() |
35 | 37 | ||
38 | self.model.train() | ||
39 | |||
36 | for step, batch in enumerate(self.train_dataloader): | 40 | for step, batch in enumerate(self.train_dataloader): |
37 | with self.accelerator.accumulate(self.model): | 41 | with self.accelerator.accumulate(self.model): |
38 | loss, acc, bsz = self.loss_fn(batch) | 42 | loss, acc, bsz = self.loss_fn(batch) |
@@ -42,13 +46,24 @@ class LRFinder(): | |||
42 | self.optimizer.step() | 46 | self.optimizer.step() |
43 | self.optimizer.zero_grad(set_to_none=True) | 47 | self.optimizer.zero_grad(set_to_none=True) |
44 | 48 | ||
45 | avg_loss.update(loss.detach_(), bsz) | 49 | if self.accelerator.sync_gradients: |
50 | progress_bar.update(1) | ||
46 | 51 | ||
47 | if step >= num_steps: | 52 | if step >= num_train_steps: |
48 | break | 53 | break |
49 | 54 | ||
50 | if self.accelerator.sync_gradients: | 55 | self.model.eval() |
51 | progress_bar.update(1) | 56 | |
57 | with torch.inference_mode(): | ||
58 | for step, batch in enumerate(self.val_dataloader): | ||
59 | loss, acc, bsz = self.loss_fn(batch) | ||
60 | avg_loss.update(loss.detach_(), bsz) | ||
61 | |||
62 | if self.accelerator.sync_gradients: | ||
63 | progress_bar.update(1) | ||
64 | |||
65 | if step >= num_val_steps: | ||
66 | break | ||
52 | 67 | ||
53 | lr_scheduler.step() | 68 | lr_scheduler.step() |
54 | 69 | ||
@@ -104,9 +119,6 @@ class LRFinder(): | |||
104 | ax.set_xlabel("Learning rate") | 119 | ax.set_xlabel("Learning rate") |
105 | ax.set_ylabel("Loss") | 120 | ax.set_ylabel("Loss") |
106 | 121 | ||
107 | if fig is not None: | ||
108 | plt.show() | ||
109 | |||
110 | 122 | ||
111 | def get_exponential_schedule(optimizer, num_epochs, last_epoch=-1): | 123 | def get_exponential_schedule(optimizer, num_epochs, last_epoch=-1): |
112 | def lr_lambda(current_epoch: int): | 124 | def lr_lambda(current_epoch: int): |