diff options
Diffstat (limited to 'training')
| -rw-r--r-- | training/lr.py | 51 | ||||
| -rw-r--r-- | training/util.py | 2 |
2 files changed, 26 insertions, 27 deletions
diff --git a/training/lr.py b/training/lr.py index c765150..68e0f72 100644 --- a/training/lr.py +++ b/training/lr.py | |||
| @@ -1,5 +1,5 @@ | |||
| 1 | import math | 1 | import math |
| 2 | import copy | 2 | from contextlib import _GeneratorContextManager, nullcontext |
| 3 | from typing import Callable, Any, Tuple, Union | 3 | from typing import Callable, Any, Tuple, Union |
| 4 | from functools import partial | 4 | from functools import partial |
| 5 | 5 | ||
| @@ -25,9 +25,9 @@ class LRFinder(): | |||
| 25 | train_dataloader, | 25 | train_dataloader, |
| 26 | val_dataloader, | 26 | val_dataloader, |
| 27 | loss_fn: Union[Callable[[int, Any], Tuple[Any, Any, int]], Callable[[int, Any, bool], Tuple[Any, Any, int]]], | 27 | loss_fn: Union[Callable[[int, Any], Tuple[Any, Any, int]], Callable[[int, Any, bool], Tuple[Any, Any, int]]], |
| 28 | on_train: Callable[[], None] = noop, | 28 | on_train: Callable[[], _GeneratorContextManager] = nullcontext, |
| 29 | on_clip: Callable[[], None] = noop, | 29 | on_clip: Callable[[], None] = noop, |
| 30 | on_eval: Callable[[], None] = noop | 30 | on_eval: Callable[[], _GeneratorContextManager] = nullcontext |
| 31 | ): | 31 | ): |
| 32 | self.accelerator = accelerator | 32 | self.accelerator = accelerator |
| 33 | self.model = model | 33 | self.model = model |
| @@ -51,7 +51,6 @@ class LRFinder(): | |||
| 51 | num_train_batches: int = 1, | 51 | num_train_batches: int = 1, |
| 52 | num_val_batches: int = math.inf, | 52 | num_val_batches: int = math.inf, |
| 53 | smooth_f: float = 0.05, | 53 | smooth_f: float = 0.05, |
| 54 | diverge_th: int = 5, | ||
| 55 | ): | 54 | ): |
| 56 | best_loss = None | 55 | best_loss = None |
| 57 | best_acc = None | 56 | best_acc = None |
| @@ -84,40 +83,40 @@ class LRFinder(): | |||
| 84 | avg_acc = AverageMeter() | 83 | avg_acc = AverageMeter() |
| 85 | 84 | ||
| 86 | self.model.train() | 85 | self.model.train() |
| 87 | self.on_train() | ||
| 88 | 86 | ||
| 89 | for step, batch in enumerate(self.train_dataloader): | 87 | with self.on_train(): |
| 90 | if step >= num_train_batches: | 88 | for step, batch in enumerate(self.train_dataloader): |
| 91 | break | 89 | if step >= num_train_batches: |
| 90 | break | ||
| 92 | 91 | ||
| 93 | with self.accelerator.accumulate(self.model): | 92 | with self.accelerator.accumulate(self.model): |
| 94 | loss, acc, bsz = self.loss_fn(step, batch) | 93 | loss, acc, bsz = self.loss_fn(step, batch) |
| 95 | 94 | ||
| 96 | self.accelerator.backward(loss) | 95 | self.accelerator.backward(loss) |
| 97 | 96 | ||
| 98 | if self.accelerator.sync_gradients: | 97 | if self.accelerator.sync_gradients: |
| 99 | self.on_clip() | 98 | self.on_clip() |
| 100 | 99 | ||
| 101 | self.optimizer.step() | 100 | self.optimizer.step() |
| 102 | lr_scheduler.step() | 101 | lr_scheduler.step() |
| 103 | self.optimizer.zero_grad(set_to_none=True) | 102 | self.optimizer.zero_grad(set_to_none=True) |
| 104 | 103 | ||
| 105 | if self.accelerator.sync_gradients: | 104 | if self.accelerator.sync_gradients: |
| 106 | progress_bar.update(1) | 105 | progress_bar.update(1) |
| 107 | 106 | ||
| 108 | self.model.eval() | 107 | self.model.eval() |
| 109 | self.on_eval() | ||
| 110 | 108 | ||
| 111 | with torch.inference_mode(): | 109 | with torch.inference_mode(): |
| 112 | for step, batch in enumerate(self.val_dataloader): | 110 | with self.on_eval(): |
| 113 | if step >= num_val_batches: | 111 | for step, batch in enumerate(self.val_dataloader): |
| 114 | break | 112 | if step >= num_val_batches: |
| 113 | break | ||
| 115 | 114 | ||
| 116 | loss, acc, bsz = self.loss_fn(step, batch, True) | 115 | loss, acc, bsz = self.loss_fn(step, batch, True) |
| 117 | avg_loss.update(loss.detach_(), bsz) | 116 | avg_loss.update(loss.detach_(), bsz) |
| 118 | avg_acc.update(acc.detach_(), bsz) | 117 | avg_acc.update(acc.detach_(), bsz) |
| 119 | 118 | ||
| 120 | progress_bar.update(1) | 119 | progress_bar.update(1) |
| 121 | 120 | ||
| 122 | loss = avg_loss.avg.item() | 121 | loss = avg_loss.avg.item() |
| 123 | acc = avg_acc.avg.item() | 122 | acc = avg_acc.avg.item() |
diff --git a/training/util.py b/training/util.py index 6f1e85a..bed7111 100644 --- a/training/util.py +++ b/training/util.py | |||
| @@ -262,7 +262,7 @@ class EMAModel: | |||
| 262 | raise ValueError("collected_params and shadow_params must have the same length") | 262 | raise ValueError("collected_params and shadow_params must have the same length") |
| 263 | 263 | ||
| 264 | @contextmanager | 264 | @contextmanager |
| 265 | def apply_temporary(self, parameters): | 265 | def apply_temporary(self, parameters: Iterable[torch.nn.Parameter]): |
| 266 | try: | 266 | try: |
| 267 | parameters = list(parameters) | 267 | parameters = list(parameters) |
| 268 | original_params = [p.clone() for p in parameters] | 268 | original_params = [p.clone() for p in parameters] |
