diff options
Diffstat (limited to 'training')
-rw-r--r-- | training/functional.py | 17 | ||||
-rw-r--r-- | training/strategy/dreambooth.py | 4 | ||||
-rw-r--r-- | training/strategy/lora.py | 4 | ||||
-rw-r--r-- | training/strategy/ti.py | 23 |
4 files changed, 34 insertions, 14 deletions
diff --git a/training/functional.py b/training/functional.py index 2da0f69..ebc40de 100644 --- a/training/functional.py +++ b/training/functional.py | |||
@@ -42,7 +42,7 @@ class TrainingCallbacks(): | |||
42 | on_after_optimize: Callable[[Any, dict[str, float]], None] = const() | 42 | on_after_optimize: Callable[[Any, dict[str, float]], None] = const() |
43 | on_after_epoch: Callable[[], None] = const() | 43 | on_after_epoch: Callable[[], None] = const() |
44 | on_eval: Callable[[], _GeneratorContextManager] = const(nullcontext()) | 44 | on_eval: Callable[[], _GeneratorContextManager] = const(nullcontext()) |
45 | on_sample: Callable[[int], None] = const() | 45 | on_sample: Callable[[int, int], None] = const() |
46 | on_checkpoint: Callable[[int, str], None] = const() | 46 | on_checkpoint: Callable[[int, str], None] = const() |
47 | 47 | ||
48 | 48 | ||
@@ -96,6 +96,7 @@ def save_samples( | |||
96 | output_dir: Path, | 96 | output_dir: Path, |
97 | seed: int, | 97 | seed: int, |
98 | step: int, | 98 | step: int, |
99 | cycle: int = 1, | ||
99 | batch_size: int = 1, | 100 | batch_size: int = 1, |
100 | num_batches: int = 1, | 101 | num_batches: int = 1, |
101 | num_steps: int = 20, | 102 | num_steps: int = 20, |
@@ -125,7 +126,7 @@ def save_samples( | |||
125 | 126 | ||
126 | for pool, data, gen in datasets: | 127 | for pool, data, gen in datasets: |
127 | all_samples = [] | 128 | all_samples = [] |
128 | file_path = output_dir / pool / f"step_{step}.jpg" | 129 | file_path = output_dir / pool / f"step_{cycle}_{step}.jpg" |
129 | file_path.parent.mkdir(parents=True, exist_ok=True) | 130 | file_path.parent.mkdir(parents=True, exist_ok=True) |
130 | 131 | ||
131 | batches = list(itertools.islice(itertools.cycle(data), batch_size * num_batches)) | 132 | batches = list(itertools.islice(itertools.cycle(data), batch_size * num_batches)) |
@@ -455,7 +456,7 @@ def train_loop( | |||
455 | sample_frequency: int = 10, | 456 | sample_frequency: int = 10, |
456 | checkpoint_frequency: int = 50, | 457 | checkpoint_frequency: int = 50, |
457 | milestone_checkpoints: bool = True, | 458 | milestone_checkpoints: bool = True, |
458 | initial_samples: bool = True, | 459 | cycle: int = 1, |
459 | global_step_offset: int = 0, | 460 | global_step_offset: int = 0, |
460 | num_epochs: int = 100, | 461 | num_epochs: int = 100, |
461 | gradient_accumulation_steps: int = 1, | 462 | gradient_accumulation_steps: int = 1, |
@@ -518,12 +519,12 @@ def train_loop( | |||
518 | try: | 519 | try: |
519 | for epoch in range(num_epochs): | 520 | for epoch in range(num_epochs): |
520 | if accelerator.is_main_process: | 521 | if accelerator.is_main_process: |
521 | if epoch % sample_frequency == 0 and (initial_samples or epoch != 0): | 522 | if epoch % sample_frequency == 0 and (cycle == 1 or epoch != 0): |
522 | local_progress_bar.clear() | 523 | local_progress_bar.clear() |
523 | global_progress_bar.clear() | 524 | global_progress_bar.clear() |
524 | 525 | ||
525 | with on_eval(): | 526 | with on_eval(): |
526 | on_sample(global_step) | 527 | on_sample(cycle, global_step) |
527 | 528 | ||
528 | if epoch % checkpoint_frequency == 0 and epoch != 0: | 529 | if epoch % checkpoint_frequency == 0 and epoch != 0: |
529 | local_progress_bar.clear() | 530 | local_progress_bar.clear() |
@@ -648,7 +649,7 @@ def train_loop( | |||
648 | if accelerator.is_main_process: | 649 | if accelerator.is_main_process: |
649 | print("Finished!") | 650 | print("Finished!") |
650 | with on_eval(): | 651 | with on_eval(): |
651 | on_sample(global_step) | 652 | on_sample(cycle, global_step) |
652 | on_checkpoint(global_step, "end") | 653 | on_checkpoint(global_step, "end") |
653 | 654 | ||
654 | except KeyboardInterrupt: | 655 | except KeyboardInterrupt: |
@@ -680,7 +681,7 @@ def train( | |||
680 | sample_frequency: int = 20, | 681 | sample_frequency: int = 20, |
681 | checkpoint_frequency: int = 50, | 682 | checkpoint_frequency: int = 50, |
682 | milestone_checkpoints: bool = True, | 683 | milestone_checkpoints: bool = True, |
683 | initial_samples: bool = True, | 684 | cycle: int = 1, |
684 | global_step_offset: int = 0, | 685 | global_step_offset: int = 0, |
685 | guidance_scale: float = 0.0, | 686 | guidance_scale: float = 0.0, |
686 | prior_loss_weight: float = 1.0, | 687 | prior_loss_weight: float = 1.0, |
@@ -731,7 +732,7 @@ def train( | |||
731 | sample_frequency=sample_frequency, | 732 | sample_frequency=sample_frequency, |
732 | checkpoint_frequency=checkpoint_frequency, | 733 | checkpoint_frequency=checkpoint_frequency, |
733 | milestone_checkpoints=milestone_checkpoints, | 734 | milestone_checkpoints=milestone_checkpoints, |
734 | initial_samples=initial_samples, | 735 | cycle=cycle, |
735 | global_step_offset=global_step_offset, | 736 | global_step_offset=global_step_offset, |
736 | num_epochs=num_train_epochs, | 737 | num_epochs=num_train_epochs, |
737 | gradient_accumulation_steps=gradient_accumulation_steps, | 738 | gradient_accumulation_steps=gradient_accumulation_steps, |
diff --git a/training/strategy/dreambooth.py b/training/strategy/dreambooth.py index 4ae28b7..e6fcc89 100644 --- a/training/strategy/dreambooth.py +++ b/training/strategy/dreambooth.py | |||
@@ -148,7 +148,7 @@ def dreambooth_strategy_callbacks( | |||
148 | torch.cuda.empty_cache() | 148 | torch.cuda.empty_cache() |
149 | 149 | ||
150 | @torch.no_grad() | 150 | @torch.no_grad() |
151 | def on_sample(step): | 151 | def on_sample(cycle, step): |
152 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) | 152 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) |
153 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) | 153 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) |
154 | 154 | ||
@@ -158,7 +158,7 @@ def dreambooth_strategy_callbacks( | |||
158 | unet_.to(dtype=weight_dtype) | 158 | unet_.to(dtype=weight_dtype) |
159 | text_encoder_.to(dtype=weight_dtype) | 159 | text_encoder_.to(dtype=weight_dtype) |
160 | 160 | ||
161 | save_samples_(step=step, unet=unet_, text_encoder=text_encoder_) | 161 | save_samples_(cycle=cycle, step=step, unet=unet_, text_encoder=text_encoder_) |
162 | 162 | ||
163 | unet_.to(dtype=orig_unet_dtype) | 163 | unet_.to(dtype=orig_unet_dtype) |
164 | text_encoder_.to(dtype=orig_text_encoder_dtype) | 164 | text_encoder_.to(dtype=orig_text_encoder_dtype) |
diff --git a/training/strategy/lora.py b/training/strategy/lora.py index 48236fb..5c3012e 100644 --- a/training/strategy/lora.py +++ b/training/strategy/lora.py | |||
@@ -146,11 +146,11 @@ def lora_strategy_callbacks( | |||
146 | torch.cuda.empty_cache() | 146 | torch.cuda.empty_cache() |
147 | 147 | ||
148 | @torch.no_grad() | 148 | @torch.no_grad() |
149 | def on_sample(step): | 149 | def on_sample(cycle, step): |
150 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) | 150 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) |
151 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) | 151 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) |
152 | 152 | ||
153 | save_samples_(step=step, unet=unet_, text_encoder=text_encoder_) | 153 | save_samples_(cycle=cycle, step=step, unet=unet_, text_encoder=text_encoder_) |
154 | 154 | ||
155 | del unet_, text_encoder_ | 155 | del unet_, text_encoder_ |
156 | 156 | ||
diff --git a/training/strategy/ti.py b/training/strategy/ti.py index f0b84b5..6bbff64 100644 --- a/training/strategy/ti.py +++ b/training/strategy/ti.py | |||
@@ -104,10 +104,28 @@ def textual_inversion_strategy_callbacks( | |||
104 | yield | 104 | yield |
105 | 105 | ||
106 | @torch.no_grad() | 106 | @torch.no_grad() |
107 | def on_before_optimize(epoch: int): | ||
108 | if use_emb_decay: | ||
109 | params = [ | ||
110 | p | ||
111 | for p in text_encoder.text_model.embeddings.token_embedding.parameters() | ||
112 | if p.grad is not None | ||
113 | ] | ||
114 | return torch.stack(params) if len(params) != 0 else None | ||
115 | |||
116 | @torch.no_grad() | ||
107 | def on_after_optimize(w, lrs: dict[str, float]): | 117 | def on_after_optimize(w, lrs: dict[str, float]): |
108 | if ema_embeddings is not None: | 118 | if ema_embeddings is not None: |
109 | ema_embeddings.step(text_encoder.text_model.embeddings.token_embedding.parameters()) | 119 | ema_embeddings.step(text_encoder.text_model.embeddings.token_embedding.parameters()) |
110 | 120 | ||
121 | if use_emb_decay and w is not None: | ||
122 | lr = lrs["emb"] or lrs["0"] | ||
123 | lambda_ = emb_decay * lr | ||
124 | |||
125 | if lambda_ != 0: | ||
126 | norm = w[:, :].norm(dim=-1, keepdim=True) | ||
127 | w[:].add_((w[:] / norm.clamp_min(1e-12)) * lambda_ * (emb_decay_target - norm)) | ||
128 | |||
111 | def on_log(): | 129 | def on_log(): |
112 | if ema_embeddings is not None: | 130 | if ema_embeddings is not None: |
113 | return {"ema_decay": ema_embeddings.decay} | 131 | return {"ema_decay": ema_embeddings.decay} |
@@ -125,7 +143,7 @@ def textual_inversion_strategy_callbacks( | |||
125 | ) | 143 | ) |
126 | 144 | ||
127 | @torch.no_grad() | 145 | @torch.no_grad() |
128 | def on_sample(step): | 146 | def on_sample(cycle, step): |
129 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) | 147 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) |
130 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) | 148 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) |
131 | 149 | ||
@@ -135,7 +153,7 @@ def textual_inversion_strategy_callbacks( | |||
135 | unet_.to(dtype=weight_dtype) | 153 | unet_.to(dtype=weight_dtype) |
136 | text_encoder_.to(dtype=weight_dtype) | 154 | text_encoder_.to(dtype=weight_dtype) |
137 | 155 | ||
138 | save_samples_(step=step, unet=unet_, text_encoder=text_encoder_) | 156 | save_samples_(cycle=cycle, step=step, unet=unet_, text_encoder=text_encoder_) |
139 | 157 | ||
140 | unet_.to(dtype=orig_unet_dtype) | 158 | unet_.to(dtype=orig_unet_dtype) |
141 | text_encoder_.to(dtype=orig_text_encoder_dtype) | 159 | text_encoder_.to(dtype=orig_text_encoder_dtype) |
@@ -148,6 +166,7 @@ def textual_inversion_strategy_callbacks( | |||
148 | return TrainingCallbacks( | 166 | return TrainingCallbacks( |
149 | on_train=on_train, | 167 | on_train=on_train, |
150 | on_eval=on_eval, | 168 | on_eval=on_eval, |
169 | on_before_optimize=on_before_optimize, | ||
151 | on_after_optimize=on_after_optimize, | 170 | on_after_optimize=on_after_optimize, |
152 | on_log=on_log, | 171 | on_log=on_log, |
153 | on_checkpoint=on_checkpoint, | 172 | on_checkpoint=on_checkpoint, |