diff options
Diffstat (limited to 'training')
-rw-r--r-- | training/lr.py | 115 |
1 files changed, 115 insertions, 0 deletions
diff --git a/training/lr.py b/training/lr.py new file mode 100644 index 0000000..dd37baa --- /dev/null +++ b/training/lr.py | |||
@@ -0,0 +1,115 @@ | |||
1 | import numpy as np | ||
2 | from torch.optim.lr_scheduler import LambdaLR | ||
3 | from tqdm.auto import tqdm | ||
4 | import matplotlib.pyplot as plt | ||
5 | |||
6 | from training.util import AverageMeter | ||
7 | |||
8 | |||
9 | class LRFinder(): | ||
10 | def __init__(self, accelerator, model, optimizer, train_dataloader, loss_fn): | ||
11 | self.accelerator = accelerator | ||
12 | self.model = model | ||
13 | self.optimizer = optimizer | ||
14 | self.train_dataloader = train_dataloader | ||
15 | self.loss_fn = loss_fn | ||
16 | |||
17 | def run(self, num_epochs=100, num_steps=1, smooth_f=0.05, diverge_th=5): | ||
18 | best_loss = None | ||
19 | lrs = [] | ||
20 | losses = [] | ||
21 | |||
22 | lr_scheduler = get_exponential_schedule(self.optimizer, num_epochs) | ||
23 | |||
24 | progress_bar = tqdm( | ||
25 | range(num_epochs * num_steps), | ||
26 | disable=not self.accelerator.is_local_main_process, | ||
27 | dynamic_ncols=True | ||
28 | ) | ||
29 | progress_bar.set_description("Epoch X / Y") | ||
30 | |||
31 | for epoch in range(num_epochs): | ||
32 | progress_bar.set_description(f"Epoch {epoch + 1} / {num_epochs}") | ||
33 | |||
34 | avg_loss = AverageMeter() | ||
35 | |||
36 | for step, batch in enumerate(self.train_dataloader): | ||
37 | with self.accelerator.accumulate(self.model): | ||
38 | loss, acc, bsz = self.loss_fn(batch) | ||
39 | |||
40 | self.accelerator.backward(loss) | ||
41 | |||
42 | self.optimizer.step() | ||
43 | self.optimizer.zero_grad(set_to_none=True) | ||
44 | |||
45 | avg_loss.update(loss.detach_(), bsz) | ||
46 | |||
47 | if step >= num_steps: | ||
48 | break | ||
49 | |||
50 | if self.accelerator.sync_gradients: | ||
51 | progress_bar.update(1) | ||
52 | |||
53 | lr_scheduler.step() | ||
54 | |||
55 | loss = avg_loss.avg.item() | ||
56 | if epoch == 0: | ||
57 | best_loss = loss | ||
58 | else: | ||
59 | if smooth_f > 0: | ||
60 | loss = smooth_f * loss + (1 - smooth_f) * losses[-1] | ||
61 | if loss < best_loss: | ||
62 | best_loss = loss | ||
63 | |||
64 | lr = lr_scheduler.get_last_lr()[0] | ||
65 | |||
66 | lrs.append(lr) | ||
67 | losses.append(loss) | ||
68 | |||
69 | progress_bar.set_postfix({ | ||
70 | "loss": loss, | ||
71 | "best": best_loss, | ||
72 | "lr": lr, | ||
73 | }) | ||
74 | |||
75 | if loss > diverge_th * best_loss: | ||
76 | print("Stopping early, the loss has diverged") | ||
77 | break | ||
78 | |||
79 | fig, ax = plt.subplots() | ||
80 | ax.plot(lrs, losses) | ||
81 | |||
82 | print("LR suggestion: steepest gradient") | ||
83 | min_grad_idx = None | ||
84 | try: | ||
85 | min_grad_idx = (np.gradient(np.array(losses))).argmin() | ||
86 | except ValueError: | ||
87 | print( | ||
88 | "Failed to compute the gradients, there might not be enough points." | ||
89 | ) | ||
90 | if min_grad_idx is not None: | ||
91 | print("Suggested LR: {:.2E}".format(lrs[min_grad_idx])) | ||
92 | ax.scatter( | ||
93 | lrs[min_grad_idx], | ||
94 | losses[min_grad_idx], | ||
95 | s=75, | ||
96 | marker="o", | ||
97 | color="red", | ||
98 | zorder=3, | ||
99 | label="steepest gradient", | ||
100 | ) | ||
101 | ax.legend() | ||
102 | |||
103 | ax.set_xscale("log") | ||
104 | ax.set_xlabel("Learning rate") | ||
105 | ax.set_ylabel("Loss") | ||
106 | |||
107 | if fig is not None: | ||
108 | plt.show() | ||
109 | |||
110 | |||
111 | def get_exponential_schedule(optimizer, num_epochs, last_epoch=-1): | ||
112 | def lr_lambda(current_epoch: int): | ||
113 | return (current_epoch / num_epochs) ** 5 | ||
114 | |||
115 | return LambdaLR(optimizer, lr_lambda, last_epoch) | ||