diff options
Diffstat (limited to 'training')
| -rw-r--r-- | training/functional.py | 13 | ||||
| -rw-r--r-- | training/strategy/dreambooth.py | 10 | 
2 files changed, 10 insertions, 13 deletions
diff --git a/training/functional.py b/training/functional.py index f68faf9..3c7848f 100644 --- a/training/functional.py +++ b/training/functional.py  | |||
| @@ -348,7 +348,6 @@ def loss_step( | |||
| 348 | guidance_scale: float, | 348 | guidance_scale: float, | 
| 349 | prior_loss_weight: float, | 349 | prior_loss_weight: float, | 
| 350 | seed: int, | 350 | seed: int, | 
| 351 | offset_noise_strength: float, | ||
| 352 | input_pertubation: float, | 351 | input_pertubation: float, | 
| 353 | disc: Optional[ConvNeXtDiscriminator], | 352 | disc: Optional[ConvNeXtDiscriminator], | 
| 354 | min_snr_gamma: int, | 353 | min_snr_gamma: int, | 
| @@ -377,16 +376,6 @@ def loss_step( | |||
| 377 | ) | 376 | ) | 
| 378 | applied_noise = noise | 377 | applied_noise = noise | 
| 379 | 378 | ||
| 380 | if offset_noise_strength != 0: | ||
| 381 | applied_noise = applied_noise + offset_noise_strength * perlin_noise( | ||
| 382 | latents.shape, | ||
| 383 | res=1, | ||
| 384 | octaves=4, | ||
| 385 | dtype=latents.dtype, | ||
| 386 | device=latents.device, | ||
| 387 | generator=generator, | ||
| 388 | ) | ||
| 389 | |||
| 390 | if input_pertubation != 0: | 379 | if input_pertubation != 0: | 
| 391 | applied_noise = applied_noise + input_pertubation * torch.randn( | 380 | applied_noise = applied_noise + input_pertubation * torch.randn( | 
| 392 | latents.shape, | 381 | latents.shape, | 
| @@ -751,7 +740,6 @@ def train( | |||
| 751 | global_step_offset: int = 0, | 740 | global_step_offset: int = 0, | 
| 752 | guidance_scale: float = 0.0, | 741 | guidance_scale: float = 0.0, | 
| 753 | prior_loss_weight: float = 1.0, | 742 | prior_loss_weight: float = 1.0, | 
| 754 | offset_noise_strength: float = 0.01, | ||
| 755 | input_pertubation: float = 0.1, | 743 | input_pertubation: float = 0.1, | 
| 756 | disc: Optional[ConvNeXtDiscriminator] = None, | 744 | disc: Optional[ConvNeXtDiscriminator] = None, | 
| 757 | schedule_sampler: Optional[ScheduleSampler] = None, | 745 | schedule_sampler: Optional[ScheduleSampler] = None, | 
| @@ -814,7 +802,6 @@ def train( | |||
| 814 | guidance_scale, | 802 | guidance_scale, | 
| 815 | prior_loss_weight, | 803 | prior_loss_weight, | 
| 816 | seed, | 804 | seed, | 
| 817 | offset_noise_strength, | ||
| 818 | input_pertubation, | 805 | input_pertubation, | 
| 819 | disc, | 806 | disc, | 
| 820 | min_snr_gamma, | 807 | min_snr_gamma, | 
diff --git a/training/strategy/dreambooth.py b/training/strategy/dreambooth.py index 88b441b..43fe838 100644 --- a/training/strategy/dreambooth.py +++ b/training/strategy/dreambooth.py  | |||
| @@ -1,4 +1,5 @@ | |||
| 1 | from typing import Optional | 1 | from typing import Optional | 
| 2 | from types import MethodType | ||
| 2 | from functools import partial | 3 | from functools import partial | 
| 3 | from contextlib import contextmanager, nullcontext | 4 | from contextlib import contextmanager, nullcontext | 
| 4 | from pathlib import Path | 5 | from pathlib import Path | 
| @@ -130,6 +131,9 @@ def dreambooth_strategy_callbacks( | |||
| 130 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=False) | 131 | unet_ = accelerator.unwrap_model(unet, keep_fp32_wrapper=False) | 
| 131 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=False) | 132 | text_encoder_ = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=False) | 
| 132 | 133 | ||
| 134 | unet_.forward = MethodType(unet_.forward, unet_) | ||
| 135 | text_encoder_.forward = MethodType(text_encoder_.forward, text_encoder_) | ||
| 136 | |||
| 133 | with ema_context(): | 137 | with ema_context(): | 
| 134 | pipeline = VlpnStableDiffusion( | 138 | pipeline = VlpnStableDiffusion( | 
| 135 | text_encoder=text_encoder_, | 139 | text_encoder=text_encoder_, | 
| @@ -185,6 +189,7 @@ def dreambooth_prepare( | |||
| 185 | train_dataloader: DataLoader, | 189 | train_dataloader: DataLoader, | 
| 186 | val_dataloader: Optional[DataLoader], | 190 | val_dataloader: Optional[DataLoader], | 
| 187 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, | 191 | lr_scheduler: torch.optim.lr_scheduler._LRScheduler, | 
| 192 | text_encoder_unfreeze_last_n_layers: int = 2, | ||
| 188 | **kwargs | 193 | **kwargs | 
| 189 | ): | 194 | ): | 
| 190 | ( | 195 | ( | 
| @@ -198,6 +203,11 @@ def dreambooth_prepare( | |||
| 198 | text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler | 203 | text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler | 
| 199 | ) | 204 | ) | 
| 200 | 205 | ||
| 206 | for layer in text_encoder.text_model.encoder.layers[ | ||
| 207 | : (-1 * text_encoder_unfreeze_last_n_layers) | ||
| 208 | ]: | ||
| 209 | layer.requires_grad_(False) | ||
| 210 | |||
| 201 | text_encoder.text_model.embeddings.requires_grad_(False) | 211 | text_encoder.text_model.embeddings.requires_grad_(False) | 
| 202 | 212 | ||
| 203 | return text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler | 213 | return text_encoder, unet, optimizer, train_dataloader, val_dataloader, lr_scheduler | 
