1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
|
import math
import pandas as pd
from pathlib import Path
import pytorch_lightning as pl
from PIL import Image
from torch.utils.data import Dataset, DataLoader, random_split
from torchvision import transforms
from typing import NamedTuple, List
class CSVDataItem(NamedTuple):
instance_image_path: Path
class_image_path: Path
prompt: str
nprompt: str
class CSVDataModule(pl.LightningDataModule):
def __init__(
self,
batch_size,
data_file,
tokenizer,
instance_identifier,
class_identifier=None,
class_subdir="cls",
num_class_images=100,
size=512,
repeats=100,
interpolation="bicubic",
center_crop=False,
valid_set_size=None,
generator=None,
collate_fn=None
):
super().__init__()
self.data_file = Path(data_file)
if not self.data_file.is_file():
raise ValueError("data_file must be a file")
self.data_root = self.data_file.parent
self.class_root = self.data_root.joinpath(class_subdir)
self.class_root.mkdir(parents=True, exist_ok=True)
self.num_class_images = num_class_images
self.tokenizer = tokenizer
self.instance_identifier = instance_identifier
self.class_identifier = class_identifier
self.size = size
self.repeats = repeats
self.center_crop = center_crop
self.interpolation = interpolation
self.valid_set_size = valid_set_size
self.generator = generator
self.collate_fn = collate_fn
self.batch_size = batch_size
def prepare_subdata(self, data, num_class_images=1):
image_multiplier = max(math.ceil(num_class_images / len(data)), 1)
return [
CSVDataItem(
self.data_root.joinpath(item.image),
self.class_root.joinpath(f"{Path(item.image).stem}_{i}{Path(item.image).suffix}"),
item.prompt,
item.nprompt if "nprompt" in item else ""
)
for item in data
for i in range(image_multiplier)
]
def prepare_data(self):
metadata = pd.read_csv(self.data_file)
metadata = [item for item in metadata.itertuples() if "skip" not in item or item.skip != "x"]
num_images = len(metadata)
valid_set_size = int(num_images * 0.2)
if self.valid_set_size:
valid_set_size = min(valid_set_size, self.valid_set_size)
valid_set_size = max(valid_set_size, 1)
train_set_size = num_images - valid_set_size
data_train, data_val = random_split(metadata, [train_set_size, valid_set_size], self.generator)
self.data_train = self.prepare_subdata(data_train, self.num_class_images)
self.data_val = self.prepare_subdata(data_val)
def setup(self, stage=None):
train_dataset = CSVDataset(self.data_train, self.tokenizer, batch_size=self.batch_size,
instance_identifier=self.instance_identifier, class_identifier=self.class_identifier,
num_class_images=self.num_class_images,
size=self.size, interpolation=self.interpolation,
center_crop=self.center_crop, repeats=self.repeats)
val_dataset = CSVDataset(self.data_val, self.tokenizer, batch_size=self.batch_size,
instance_identifier=self.instance_identifier,
size=self.size, interpolation=self.interpolation,
center_crop=self.center_crop, repeats=self.repeats)
self.train_dataloader_ = DataLoader(train_dataset, batch_size=self.batch_size,
shuffle=True, pin_memory=True, collate_fn=self.collate_fn)
self.val_dataloader_ = DataLoader(val_dataset, batch_size=self.batch_size,
pin_memory=True, collate_fn=self.collate_fn)
def train_dataloader(self):
return self.train_dataloader_
def val_dataloader(self):
return self.val_dataloader_
class CSVDataset(Dataset):
def __init__(
self,
data: List[CSVDataItem],
tokenizer,
instance_identifier,
batch_size=1,
class_identifier=None,
num_class_images=0,
size=512,
repeats=1,
interpolation="bicubic",
center_crop=False,
):
self.data = data
self.tokenizer = tokenizer
self.batch_size = batch_size
self.instance_identifier = instance_identifier
self.class_identifier = class_identifier
self.num_class_images = num_class_images
self.cache = {}
self.image_cache = {}
self.num_instance_images = len(self.data)
self._length = self.num_instance_images * repeats
self.interpolation = {"linear": transforms.InterpolationMode.NEAREST,
"bilinear": transforms.InterpolationMode.BILINEAR,
"bicubic": transforms.InterpolationMode.BICUBIC,
"lanczos": transforms.InterpolationMode.LANCZOS,
}[interpolation]
self.image_transforms = transforms.Compose(
[
transforms.Resize(size, interpolation=self.interpolation),
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def __len__(self):
return math.ceil(self._length / self.batch_size) * self.batch_size
def get_example(self, i):
item = self.data[i % self.num_instance_images]
cache_key = f"{item.instance_image_path}_{item.class_image_path}"
if cache_key in self.cache:
return self.cache[cache_key]
example = {}
example["prompts"] = item.prompt
example["nprompts"] = item.nprompt
if item.instance_image_path in self.image_cache:
instance_image = self.image_cache[item.instance_image_path]
else:
instance_image = Image.open(item.instance_image_path)
if not instance_image.mode == "RGB":
instance_image = instance_image.convert("RGB")
self.image_cache[item.instance_image_path] = instance_image
example["instance_images"] = instance_image
example["instance_prompt_ids"] = self.tokenizer(
item.prompt.format(self.instance_identifier),
padding="do_not_pad",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids
if self.num_class_images != 0:
class_image = Image.open(item.class_image_path)
if not class_image.mode == "RGB":
class_image = class_image.convert("RGB")
example["class_images"] = class_image
example["class_prompt_ids"] = self.tokenizer(
item.prompt.format(self.class_identifier),
padding="do_not_pad",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids
self.cache[item.instance_image_path] = example
return example
def __getitem__(self, i):
example = {}
unprocessed_example = self.get_example(i)
example["prompts"] = unprocessed_example["prompts"]
example["nprompts"] = unprocessed_example["nprompts"]
example["instance_images"] = self.image_transforms(unprocessed_example["instance_images"])
example["instance_prompt_ids"] = unprocessed_example["instance_prompt_ids"]
if self.class_identifier is not None:
example["class_images"] = self.image_transforms(unprocessed_example["class_images"])
example["class_prompt_ids"] = unprocessed_example["class_prompt_ids"]
return example
|