summaryrefslogtreecommitdiffstats
path: root/data/csv.py
blob: 619452ec91e085c586e8f116c8808f9a76a3976e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
import math
import torch
import json
from functools import partial
from pathlib import Path
from typing import NamedTuple, Optional, Union, Callable

from PIL import Image

from torch.utils.data import IterableDataset, DataLoader, random_split
from torchvision import transforms
from transformers import CLIPTokenizer

from data.keywords import prompt_to_keywords, keywords_to_prompt
from models.clip.util import unify_input_ids


cache = {}


interpolations = {
    "linear": transforms.InterpolationMode.NEAREST,
    "bilinear": transforms.InterpolationMode.BILINEAR,
    "bicubic": transforms.InterpolationMode.BICUBIC,
    "lanczos": transforms.InterpolationMode.LANCZOS,
}


def get_image(path):
    if path in cache:
        return cache[path]

    image = Image.open(path)
    if not image.mode == "RGB":
        image = image.convert("RGB")
    cache[path] = image
    return image


def prepare_prompt(prompt: Union[str, dict[str, str]]):
    return {"content": prompt} if isinstance(prompt, str) else prompt


def generate_buckets(
    items: Union[list[str], list[Path]],
    base_size: int,
    step_size: int = 64,
    max_pixels: Optional[int] = None,
    num_buckets: int = 4,
    progressive_buckets: bool = False,
    return_tensor: bool = True
):
    if max_pixels is None:
        max_pixels = (base_size + step_size) ** 2

    max_pixels = max(max_pixels, base_size * base_size)

    bucket_items: list[int] = []
    bucket_assignments: list[int] = []
    buckets = [1.0]

    for i in range(1, num_buckets + 1):
        long_side = base_size + i * step_size
        short_side = min(base_size - math.ceil((base_size - max_pixels / long_side) / step_size) * step_size, base_size)
        buckets.append(long_side / short_side)
        buckets.append(short_side / long_side)

    buckets = torch.tensor(buckets)
    bucket_indices = torch.arange(len(buckets))

    for i, item in enumerate(items):
        image = get_image(item)
        ratio = image.width / image.height

        if ratio >= 1:
            mask = torch.logical_and(buckets >= 1, buckets <= ratio)
        else:
            mask = torch.logical_and(buckets <= 1, buckets >= ratio)

        if not progressive_buckets:
            inf = torch.zeros_like(buckets)
            inf[~mask] = math.inf
            mask = (buckets + inf - ratio).abs().argmin()

        indices = bucket_indices[mask]

        if len(indices.shape) == 0:
            indices = indices.unsqueeze(0)

        bucket_items += [i] * len(indices)
        bucket_assignments += indices

    if return_tensor:
        bucket_items = torch.tensor(bucket_items)
        bucket_assignments = torch.tensor(bucket_assignments)
    else:
        buckets = buckets.tolist()

    return buckets, bucket_items, bucket_assignments


def collate_fn(dtype: torch.dtype, tokenizer: CLIPTokenizer, with_prior_preservation: bool, examples):
    prompt_ids = [example["prompt_ids"] for example in examples]
    nprompt_ids = [example["nprompt_ids"] for example in examples]

    input_ids = [example["instance_prompt_ids"] for example in examples]
    pixel_values = [example["instance_images"] for example in examples]

    if with_prior_preservation:
        input_ids += [example["class_prompt_ids"] for example in examples]
        pixel_values += [example["class_images"] for example in examples]

    pixel_values = torch.stack(pixel_values)
    pixel_values = pixel_values.to(dtype=dtype, memory_format=torch.contiguous_format)

    prompts = unify_input_ids(tokenizer, prompt_ids)
    nprompts = unify_input_ids(tokenizer, nprompt_ids)
    inputs = unify_input_ids(tokenizer, input_ids)

    batch = {
        "prompt_ids": prompts.input_ids,
        "nprompt_ids": nprompts.input_ids,
        "input_ids": inputs.input_ids,
        "pixel_values": pixel_values,
        "attention_mask": inputs.attention_mask,
    }

    return batch


class VlpnDataItem(NamedTuple):
    instance_image_path: Path
    class_image_path: Path
    prompt: list[str]
    cprompt: str
    nprompt: str
    collection: list[str]


def keyword_filter(
    placeholder_tokens: Optional[list[str]],
    collection: Optional[list[str]],
    exclude_collections: Optional[list[str]],
    item: VlpnDataItem
):
    cond1 = placeholder_tokens is None or any(
        keyword in part
        for keyword in placeholder_tokens
        for part in item.prompt
    )
    cond2 = collection is None or collection in item.collection
    cond3 = exclude_collections is None or not any(
        collection in item.collection
        for collection in exclude_collections
    )
    return cond1 and cond2 and cond3


class VlpnDataModule():
    def __init__(
        self,
        batch_size: int,
        data_file: str,
        tokenizer: CLIPTokenizer,
        class_subdir: str = "cls",
        num_class_images: int = 1,
        size: int = 768,
        num_buckets: int = 0,
        bucket_step_size: int = 64,
        bucket_max_pixels: Optional[int] = None,
        progressive_buckets: bool = False,
        dropout: float = 0,
        shuffle: bool = False,
        interpolation: str = "bicubic",
        template_key: str = "template",
        valid_set_size: Optional[int] = None,
        train_set_pad: Optional[int] = None,
        valid_set_pad: Optional[int] = None,
        seed: Optional[int] = None,
        filter: Optional[Callable[[VlpnDataItem], bool]] = None,
        dtype: torch.dtype = torch.float32,
    ):
        super().__init__()

        self.data_file = Path(data_file)

        if not self.data_file.is_file():
            raise ValueError("data_file must be a file")

        self.data_root = self.data_file.parent
        self.class_root = self.data_root / class_subdir
        self.class_root.mkdir(parents=True, exist_ok=True)
        self.num_class_images = num_class_images

        self.tokenizer = tokenizer
        self.size = size
        self.num_buckets = num_buckets
        self.bucket_step_size = bucket_step_size
        self.bucket_max_pixels = bucket_max_pixels
        self.progressive_buckets = progressive_buckets
        self.dropout = dropout
        self.shuffle = shuffle
        self.template_key = template_key
        self.interpolation = interpolation
        self.valid_set_size = valid_set_size
        self.train_set_pad = train_set_pad if train_set_pad is not None else batch_size
        self.valid_set_pad = valid_set_pad if valid_set_pad is not None else batch_size
        self.seed = seed
        self.filter = filter
        self.batch_size = batch_size
        self.dtype = dtype

    def prepare_items(self, template, expansions, data) -> list[VlpnDataItem]:
        image = template["image"] if "image" in template else "{}"
        prompt = template["prompt"] if "prompt" in template else "{content}"
        cprompt = template["cprompt"] if "cprompt" in template else "{content}"
        nprompt = template["nprompt"] if "nprompt" in template else "{content}"

        return [
            VlpnDataItem(
                self.data_root / image.format(item["image"]),
                None,
                prompt_to_keywords(
                    prompt.format(**prepare_prompt(item["prompt"] if "prompt" in item else "")),
                    expansions
                ),
                keywords_to_prompt(prompt_to_keywords(
                    cprompt.format(**prepare_prompt(item["prompt"] if "prompt" in item else "")),
                    expansions
                )),
                keywords_to_prompt(prompt_to_keywords(
                    nprompt.format(**prepare_prompt(item["nprompt"] if "nprompt" in item else "")),
                    expansions
                )),
                item["collection"].split(", ") if "collection" in item else []
            )
            for item in data
        ]

    def filter_items(self, items: list[VlpnDataItem]) -> list[VlpnDataItem]:
        if self.filter is None:
            return items

        return [item for item in items if self.filter(item)]

    def pad_items(self, items: list[VlpnDataItem], num_class_images: int = 1) -> list[VlpnDataItem]:
        image_multiplier = max(num_class_images, 1)

        return [
            VlpnDataItem(
                item.instance_image_path,
                self.class_root / f"{item.instance_image_path.stem}_{i}{item.instance_image_path.suffix}",
                item.prompt,
                item.cprompt,
                item.nprompt,
                item.collection,
            )
            for item in items
            for i in range(image_multiplier)
        ]

    def setup(self):
        with open(self.data_file, 'rt') as f:
            metadata = json.load(f)
        template = metadata[self.template_key] if self.template_key in metadata else {}
        expansions = metadata["expansions"] if "expansions" in metadata else {}
        items = metadata["items"] if "items" in metadata else []

        items = self.prepare_items(template, expansions, items)
        items = self.filter_items(items)

        num_images = len(items)

        valid_set_size = min(self.valid_set_size, num_images) if self.valid_set_size is not None else num_images // 10
        train_set_size = max(num_images - valid_set_size, 1)
        valid_set_size = num_images - train_set_size

        generator = torch.Generator(device="cpu")
        if self.seed is not None:
            generator = generator.manual_seed(self.seed)

        collate_fn_ = partial(collate_fn, self.dtype, self.tokenizer, self.num_class_images != 0)

        if valid_set_size == 0:
            data_train, data_val = items, items[:self.batch_size]
        else:
            data_train, data_val = random_split(items, [train_set_size, valid_set_size], generator=generator)

        data_train = self.pad_items(data_train, self.num_class_images)

        if len(data_train) < self.train_set_pad:
            data_train *= math.ceil(self.train_set_pad / len(data_train))

        self.train_dataset = VlpnDataset(
            data_train, self.tokenizer,
            num_buckets=self.num_buckets, progressive_buckets=self.progressive_buckets,
            bucket_step_size=self.bucket_step_size, bucket_max_pixels=self.bucket_max_pixels,
            batch_size=self.batch_size, fill_batch=True, generator=generator,
            size=self.size, interpolation=self.interpolation,
            num_class_images=self.num_class_images, dropout=self.dropout, shuffle=self.shuffle,
        )

        self.train_dataloader = DataLoader(
            self.train_dataset,
            batch_size=None, pin_memory=True, collate_fn=collate_fn_
        )

        if len(data_val) != 0:
            data_val = self.pad_items(data_val)

            if len(data_val) < self.valid_set_pad:
                data_val *= math.ceil(self.valid_set_pad / len(data_val))

            self.val_dataset = VlpnDataset(
                data_val, self.tokenizer,
                num_buckets=self.num_buckets, progressive_buckets=True,
                bucket_step_size=self.bucket_step_size, bucket_max_pixels=self.bucket_max_pixels,
                batch_size=self.batch_size, generator=generator,
                size=self.size, interpolation=self.interpolation,
            )

            self.val_dataloader = DataLoader(
                self.val_dataset,
                batch_size=None, pin_memory=True, collate_fn=collate_fn_
            )
        else:
            self.val_dataloader = None


class VlpnDataset(IterableDataset):
    def __init__(
        self,
        items: list[VlpnDataItem],
        tokenizer: CLIPTokenizer,
        num_buckets: int = 1,
        bucket_step_size: int = 64,
        bucket_max_pixels: Optional[int] = None,
        progressive_buckets: bool = False,
        batch_size: int = 1,
        fill_batch: bool = False,
        num_class_images: int = 0,
        size: int = 768,
        dropout: float = 0,
        shuffle: bool = False,
        interpolation: str = "bicubic",
        generator: Optional[torch.Generator] = None,
    ):
        self.items = items
        self.batch_size = batch_size
        self.fill_batch = fill_batch

        self.tokenizer = tokenizer
        self.num_class_images = num_class_images
        self.size = size
        self.dropout = dropout
        self.shuffle = shuffle
        self.interpolation = interpolations[interpolation]
        self.generator = generator

        self.buckets, self.bucket_items, self.bucket_assignments = generate_buckets(
            [item.instance_image_path for item in self.items],
            base_size=size,
            step_size=bucket_step_size,
            num_buckets=num_buckets,
            max_pixels=bucket_max_pixels,
            progressive_buckets=progressive_buckets,
        )

        self.bucket_item_range = torch.arange(len(self.bucket_items))

        self.length_ = (self.bucket_assignments.bincount() / self.batch_size).ceil().long().sum().item()

    def get_input_ids(self, text: str):
        return self.tokenizer(text, padding="do_not_pad").input_ids

    def __len__(self):
        return self.length_

    def __iter__(self):
        worker_info = torch.utils.data.get_worker_info()

        if self.shuffle:
            perm = torch.randperm(len(self.bucket_assignments), generator=self.generator)
            self.bucket_items = self.bucket_items[perm]
            self.bucket_assignments = self.bucket_assignments[perm]

        image_transforms = None

        mask = torch.ones_like(self.bucket_assignments, dtype=bool)
        bucket = -1
        batch = []
        batch_size = self.batch_size

        if worker_info is not None:
            batch_size = math.ceil(batch_size / worker_info.num_workers)
            worker_batch = math.ceil(len(self) / worker_info.num_workers)
            start = worker_info.id * worker_batch
            end = start + worker_batch
            mask[:start] = False
            mask[end:] = False

        while mask.any() or len(batch) != 0:
            if len(batch) >= batch_size:
                yield batch
                batch = []
                continue

            bucket_mask = mask.logical_and(self.bucket_assignments == bucket)
            bucket_items = self.bucket_items[bucket_mask]

            if len(bucket_items) == 0 and len(batch) != 0 and not self.fill_batch:
                yield batch
                batch = []
                continue

            if len(bucket_items) == 0 and len(batch) == 0:
                bucket = self.bucket_assignments[mask][0]
                ratio = self.buckets[bucket]
                width = int(self.size * ratio) if ratio > 1 else self.size
                height = int(self.size / ratio) if ratio < 1 else self.size

                image_transforms = transforms.Compose(
                    [
                        transforms.Resize(self.size, interpolation=self.interpolation),
                        transforms.RandomCrop((height, width)),
                        transforms.RandomHorizontalFlip(),
                        transforms.ToTensor(),
                        transforms.Normalize([0.5], [0.5]),
                    ]
                )

                continue

            if len(bucket_items) == 0:
                bucket_items = self.bucket_items[self.bucket_assignments == bucket]
                item_index = bucket_items[torch.randint(len(bucket_items), (1,), generator=self.generator)]
            else:
                item_index = bucket_items[0]
                mask[self.bucket_item_range[bucket_mask][0]] = False

            item = self.items[item_index]

            example = {}

            example["prompt_ids"] = self.get_input_ids(keywords_to_prompt(item.prompt))
            example["nprompt_ids"] = self.get_input_ids(item.nprompt)

            example["instance_prompt_ids"] = self.get_input_ids(
                keywords_to_prompt(item.prompt, self.dropout, True)
            )
            example["instance_images"] = image_transforms(get_image(item.instance_image_path))

            if self.num_class_images != 0:
                example["class_prompt_ids"] = self.get_input_ids(item.cprompt)
                example["class_images"] = image_transforms(get_image(item.class_image_path))

            batch.append(example)