summaryrefslogtreecommitdiffstats
path: root/models/clip/embeddings.py
blob: 9d8f77069f6d2ba8004718c3e387b8e7c019b518 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from typing import Union, Optional
from pathlib import Path

import torch
import torch.nn as nn

from safetensors import safe_open
from safetensors.torch import save_file

from transformers import CLIPTextModel
from transformers.models.clip import CLIPTextConfig
from transformers.models.clip.modeling_clip import CLIPTextEmbeddings


def resize_embedding(old_embedding: nn.Embedding, new_num_embeddings: int, initializer_factor: float = 1.0) -> nn.Embedding:
    old_num_embeddings, old_embedding_dim = old_embedding.weight.size()

    if old_num_embeddings == new_num_embeddings:
        return old_embedding

    n = min(old_num_embeddings, new_num_embeddings)

    new_embedding = nn.Embedding(
        new_num_embeddings,
        old_embedding_dim,
        device=old_embedding.weight.device,
        dtype=old_embedding.weight.dtype
    )
    new_embedding.weight.data.normal_(mean=0.0, std=initializer_factor * 0.02)
    new_embedding.weight.data[:n, :] = old_embedding.weight.data[:n, :]
    return new_embedding


class ManagedCLIPTextEmbeddings(CLIPTextEmbeddings):
    def __init__(self, config: CLIPTextConfig, embeddings: CLIPTextEmbeddings):
        super().__init__(config)

        self.token_embedding = embeddings.token_embedding
        self.position_embedding = embeddings.position_embedding
        self.initializer_factor = config.initializer_factor

        self.temp_token_embedding = nn.Embedding(
            self.token_embedding.num_embeddings,
            self.token_embedding.embedding_dim,
            device=self.token_embedding.weight.device,
            dtype=self.token_embedding.weight.dtype
        )
        self.temp_token_embedding.weight.data.normal_(mean=0.0, std=self.initializer_factor * 0.02)
        self.temp_token_ids = torch.tensor([], dtype=torch.long)

    def resize(self, size: int):
        self.temp_token_embedding = resize_embedding(self.temp_token_embedding, size, self.initializer_factor)
        self.token_embedding = resize_embedding(self.token_embedding, size, self.initializer_factor)

    def add_embed(self, token_ids: Union[int, list[int]], initializer: Optional[Union[int, list[int], torch.FloatTensor]] = None):
        if isinstance(token_ids, int):
            token_ids = [token_ids]

        if initializer is None:
            initializer = token_ids

        if isinstance(initializer, int):
            initializer = [initializer]

        if isinstance(initializer, list):
            initializer = (initializer * len(token_ids))[:len(token_ids)]

            with torch.no_grad():
                initializer = self.get_embed(initializer)

        token_ids = torch.tensor(token_ids, dtype=torch.long)

        self.temp_token_ids = torch.cat([self.temp_token_ids, token_ids])
        self.temp_token_embedding.weight.data[token_ids] = initializer.to(
            device=self.temp_token_embedding.weight.device,
            dtype=self.temp_token_embedding.weight.dtype,
        )

    def load_embed(self, input_ids: list[int], filename: Path):
        with safe_open(filename, framework="pt", device="cpu") as file:
            self.add_embed(input_ids, file.get_tensor("embed"))

    def save_embed(self, input_ids: list[int], filename: Path):
        save_file({"embed": self.get_embed(input_ids)}, filename)

    def persist(self):
        self.token_embedding.weight.data[self.temp_token_ids] = self.temp_token_embedding.weight.data[self.temp_token_ids]
        self.temp_token_ids = torch.tensor([], dtype=torch.long)

    def get_embed(self, input_ids: Union[list[int], torch.LongTensor]):
        if isinstance(input_ids, list):
            input_ids = torch.tensor(input_ids, device=self.token_embedding.weight.device, dtype=torch.long)

        embeds = self.token_embedding(input_ids)

        mask = torch.isin(input_ids, self.temp_token_ids.to(input_ids.device))
        embeds[mask] = self.temp_token_embedding(input_ids)[mask]

        return embeds

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
    ) -> torch.Tensor:
        seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]

        if position_ids is None:
            position_ids = self.position_ids[:, :seq_length]

        if inputs_embeds is None:
            inputs_embeds = self.get_embed(input_ids)

        position_embeddings = self.position_embedding(position_ids)
        embeddings = inputs_embeds + position_embeddings

        return embeddings


def patch_managed_embeddings(text_encoder: CLIPTextModel) -> ManagedCLIPTextEmbeddings:
    text_embeddings = ManagedCLIPTextEmbeddings(text_encoder.config, text_encoder.text_model.embeddings)
    text_encoder.text_model.embeddings = text_embeddings
    return text_embeddings