1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
|
from typing import Optional
import torch
from transformers import CLIPTokenizer, CLIPTextModel
def unify_input_ids(
tokenizer: CLIPTokenizer,
input_ids: list[list[int]],
max_length: Optional[int] = None,
):
if max_length is None:
return tokenizer.pad(
{"input_ids": input_ids},
padding=True,
pad_to_multiple_of=tokenizer.model_max_length,
return_tensors="pt",
)
else:
return tokenizer.pad(
{"input_ids": input_ids},
padding="max_length",
max_length=max_length,
return_tensors="pt",
)
def get_extended_embeddings(
text_encoder: CLIPTextModel,
input_ids: torch.LongTensor,
position_ids: Optional[torch.LongTensor] = None,
attention_mask=None,
):
model_max_length = text_encoder.config.max_position_embeddings
prompts = input_ids.shape[0]
input_ids = input_ids.view((-1, model_max_length))
if position_ids is not None:
position_ids = position_ids.view((-1, model_max_length))
if attention_mask is not None:
attention_mask = attention_mask.view((-1, model_max_length))
text_embeddings = text_encoder(
input_ids, position_ids=position_ids, attention_mask=attention_mask
)[0]
text_embeddings = text_embeddings.view((prompts, -1, text_embeddings.shape[2]))
return text_embeddings
|