1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
|
import argparse
import datetime
import logging
import itertools
from pathlib import Path
from functools import partial
import math
import torch
import torch.utils.checkpoint
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import LoggerType, set_seed
from slugify import slugify
import transformers
from util.files import load_config, load_embeddings_from_dir
from data.csv import VlpnDataModule, keyword_filter
from training.functional import train, get_models
from training.strategy.dreambooth import dreambooth_strategy
from training.optimization import get_scheduler
from training.util import save_args
logger = get_logger(__name__)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True
def parse_args():
parser = argparse.ArgumentParser(
description="Simple example of a training script."
)
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--train_data_file",
type=str,
default=None,
help="A folder containing the training data."
)
parser.add_argument(
"--train_data_template",
type=str,
default="template",
)
parser.add_argument(
"--train_set_pad",
type=int,
default=None,
help="The number to fill train dataset items up to."
)
parser.add_argument(
"--valid_set_pad",
type=int,
default=None,
help="The number to fill validation dataset items up to."
)
parser.add_argument(
"--project",
type=str,
default=None,
help="The name of the current project.",
)
parser.add_argument(
"--exclude_collections",
type=str,
nargs='*',
help="Exclude all items with a listed collection.",
)
parser.add_argument(
"--train_text_encoder_epochs",
default=999999,
help="Number of epochs the text encoder will be trained."
)
parser.add_argument(
"--num_buckets",
type=int,
default=0,
help="Number of aspect ratio buckets in either direction.",
)
parser.add_argument(
"--progressive_buckets",
action="store_true",
help="Include images in smaller buckets as well.",
)
parser.add_argument(
"--bucket_step_size",
type=int,
default=64,
help="Step size between buckets.",
)
parser.add_argument(
"--bucket_max_pixels",
type=int,
default=None,
help="Maximum pixels per bucket.",
)
parser.add_argument(
"--tag_dropout",
type=float,
default=0,
help="Tag dropout probability.",
)
parser.add_argument(
"--no_tag_shuffle",
action="store_true",
help="Shuffle tags.",
)
parser.add_argument(
"--vector_dropout",
type=int,
default=0,
help="Vector dropout probability.",
)
parser.add_argument(
"--vector_shuffle",
type=str,
default="auto",
choices=["all", "trailing", "leading", "between", "auto", "off"],
help='Vector shuffling algorithm.',
)
parser.add_argument(
"--guidance_scale",
type=float,
default=0,
)
parser.add_argument(
"--num_class_images",
type=int,
default=0,
help="How many class images to generate."
)
parser.add_argument(
"--class_image_dir",
type=str,
default="cls",
help="The directory where class images will be saved.",
)
parser.add_argument(
"--output_dir",
type=str,
default="output/dreambooth",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--embeddings_dir",
type=str,
default=None,
help="The embeddings directory where Textual Inversion embeddings are stored.",
)
parser.add_argument(
"--collection",
type=str,
nargs='*',
help="A collection to filter the dataset.",
)
parser.add_argument(
"--seed",
type=int,
default=None,
help="A seed for reproducible training."
)
parser.add_argument(
"--resolution",
type=int,
default=768,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--offset_noise_strength",
type=float,
default=0,
help="Perlin offset noise strength.",
)
parser.add_argument(
"--num_train_epochs",
type=int,
default=None
)
parser.add_argument(
"--num_train_steps",
type=int,
default=2000
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--find_lr",
action="store_true",
help="Automatically find a learning rate (no training).",
)
parser.add_argument(
"--learning_rate",
type=float,
default=2e-6,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="one_cycle",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial",
"constant", "constant_with_warmup", "one_cycle"],
help='The scheduler type to use.',
)
parser.add_argument(
"--lr_warmup_epochs",
type=int,
default=10,
help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--lr_mid_point",
type=float,
default=0.3,
help="OneCycle schedule mid point."
)
parser.add_argument(
"--lr_cycles",
type=int,
default=None,
help="Number of restart cycles in the lr scheduler (if supported)."
)
parser.add_argument(
"--lr_warmup_func",
type=str,
default="cos",
choices=["linear", "cos"],
)
parser.add_argument(
"--lr_warmup_exp",
type=int,
default=1,
help='If lr_warmup_func is "cos", exponent to modify the function'
)
parser.add_argument(
"--lr_annealing_func",
type=str,
default="cos",
choices=["linear", "half_cos", "cos"],
)
parser.add_argument(
"--lr_annealing_exp",
type=int,
default=3,
help='If lr_annealing_func is "half_cos" or "cos", exponent to modify the function'
)
parser.add_argument(
"--lr_min_lr",
type=float,
default=0.04,
help="Minimum learning rate in the lr scheduler."
)
parser.add_argument(
"--use_ema",
action="store_true",
help="Whether to use EMA model."
)
parser.add_argument(
"--ema_inv_gamma",
type=float,
default=1.0
)
parser.add_argument(
"--ema_power",
type=float,
default=6/7
)
parser.add_argument(
"--ema_max_decay",
type=float,
default=0.9999
)
parser.add_argument(
"--optimizer",
type=str,
default="dadan",
choices=["adam", "adam8bit", "adan", "lion", "dadam", "dadan", "adafactor"],
help='Optimizer to use'
)
parser.add_argument(
"--dadaptation_d0",
type=float,
default=1e-6,
help="The d0 parameter for Dadaptation optimizers."
)
parser.add_argument(
"--adam_beta1",
type=float,
default=None,
help="The beta1 parameter for the Adam optimizer."
)
parser.add_argument(
"--adam_beta2",
type=float,
default=None,
help="The beta2 parameter for the Adam optimizer."
)
parser.add_argument(
"--adam_weight_decay",
type=float,
default=1e-2,
help="Weight decay to use."
)
parser.add_argument(
"--adam_epsilon",
type=float,
default=1e-08,
help="Epsilon value for the Adam optimizer"
)
parser.add_argument(
"--adam_amsgrad",
type=bool,
default=False,
help="Amsgrad value for the Adam optimizer"
)
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
),
)
parser.add_argument(
"--sample_frequency",
type=int,
default=1,
help="How often to save a checkpoint and sample image",
)
parser.add_argument(
"--sample_image_size",
type=int,
default=768,
help="Size of sample images",
)
parser.add_argument(
"--sample_batches",
type=int,
default=1,
help="Number of sample batches to generate per checkpoint",
)
parser.add_argument(
"--sample_batch_size",
type=int,
default=1,
help="Number of samples to generate per batch",
)
parser.add_argument(
"--valid_set_size",
type=int,
default=None,
help="Number of images in the validation dataset."
)
parser.add_argument(
"--valid_set_repeat",
type=int,
default=1,
help="Times the images in the validation dataset are repeated."
)
parser.add_argument(
"--train_batch_size",
type=int,
default=1,
help="Batch size (per device) for the training dataloader."
)
parser.add_argument(
"--sample_steps",
type=int,
default=10,
help="Number of steps for sample generation. Higher values will result in more detailed samples, but longer runtimes.",
)
parser.add_argument(
"--prior_loss_weight",
type=float,
default=1.0,
help="The weight of prior preservation loss."
)
parser.add_argument(
"--max_grad_norm",
default=1.0,
type=float,
help="Max gradient norm."
)
parser.add_argument(
"--noise_timesteps",
type=int,
default=1000,
)
parser.add_argument(
"--config",
type=str,
default=None,
help="Path to a JSON configuration file containing arguments for invoking this script."
)
args = parser.parse_args()
if args.config is not None:
args = load_config(args.config)
args = parser.parse_args(namespace=argparse.Namespace(**args))
if args.train_data_file is None:
raise ValueError("You must specify --train_data_file")
if args.pretrained_model_name_or_path is None:
raise ValueError("You must specify --pretrained_model_name_or_path")
if args.project is None:
raise ValueError("You must specify --project")
if isinstance(args.collection, str):
args.collection = [args.collection]
if isinstance(args.exclude_collections, str):
args.exclude_collections = [args.exclude_collections]
if args.output_dir is None:
raise ValueError("You must specify --output_dir")
if args.adam_beta1 is None:
if args.optimizer in ('adam', 'adam8bit'):
args.adam_beta1 = 0.9
elif args.optimizer == 'lion':
args.adam_beta1 = 0.95
if args.adam_beta2 is None:
if args.optimizer in ('adam', 'adam8bit'):
args.adam_beta2 = 0.999
elif args.optimizer == 'lion':
args.adam_beta2 = 0.98
return args
def main():
args = parse_args()
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
output_dir = Path(args.output_dir) / slugify(args.project) / now
output_dir.mkdir(parents=True, exist_ok=True)
accelerator = Accelerator(
log_with=LoggerType.TENSORBOARD,
project_dir=f"{output_dir}",
mixed_precision=args.mixed_precision
)
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
weight_dtype = torch.float16
elif args.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
logging.basicConfig(filename=output_dir / "log.txt", level=logging.DEBUG)
if args.seed is None:
args.seed = torch.random.seed() >> 32
set_seed(args.seed)
save_args(output_dir, args)
tokenizer, text_encoder, vae, unet, noise_scheduler, sample_scheduler, embeddings = get_models(
args.pretrained_model_name_or_path)
tokenizer.set_use_vector_shuffle(args.vector_shuffle)
tokenizer.set_dropout(args.vector_dropout)
vae.enable_slicing()
vae.set_use_memory_efficient_attention_xformers(True)
unet.enable_xformers_memory_efficient_attention()
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
text_encoder.gradient_checkpointing_enable()
if args.embeddings_dir is not None:
embeddings_dir = Path(args.embeddings_dir)
if not embeddings_dir.exists() or not embeddings_dir.is_dir():
raise ValueError("--embeddings_dir must point to an existing directory")
added_tokens, added_ids = load_embeddings_from_dir(tokenizer, embeddings, embeddings_dir)
embeddings.persist()
print(f"Added {len(added_tokens)} tokens from embeddings dir: {list(zip(added_tokens, added_ids))}")
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps *
args.train_batch_size * accelerator.num_processes
)
if args.find_lr:
args.learning_rate = 1e-6
args.lr_scheduler = "exponential_growth"
if args.optimizer == 'adam8bit':
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError("To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`.")
create_optimizer = partial(
bnb.optim.AdamW8bit,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
amsgrad=args.adam_amsgrad,
)
elif args.optimizer == 'adam':
create_optimizer = partial(
torch.optim.AdamW,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
amsgrad=args.adam_amsgrad,
)
elif args.optimizer == 'adan':
try:
import timm.optim
except ImportError:
raise ImportError("To use Adan, please install the PyTorch Image Models library: `pip install timm`.")
create_optimizer = partial(
timm.optim.Adan,
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
elif args.optimizer == 'lion':
try:
import lion_pytorch
except ImportError:
raise ImportError("To use Lion, please install the lion_pytorch library: `pip install lion-pytorch`.")
create_optimizer = partial(
lion_pytorch.Lion,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
use_triton=True,
)
elif args.optimizer == 'adafactor':
create_optimizer = partial(
transformers.optimization.Adafactor,
weight_decay=args.adam_weight_decay,
scale_parameter=True,
relative_step=True,
warmup_init=True,
)
args.lr_scheduler = "adafactor"
args.lr_min_lr = args.learning_rate
args.learning_rate = None
elif args.optimizer == 'dadam':
try:
import dadaptation
except ImportError:
raise ImportError("To use DAdaptAdam, please install the dadaptation library: `pip install dadaptation`.")
create_optimizer = partial(
dadaptation.DAdaptAdam,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
decouple=True,
d0=args.dadaptation_d0,
)
args.learning_rate = 1.0
elif args.optimizer == 'dadan':
try:
import dadaptation
except ImportError:
raise ImportError("To use DAdaptAdan, please install the dadaptation library: `pip install dadaptation`.")
create_optimizer = partial(
dadaptation.DAdaptAdan,
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
d0=args.dadaptation_d0,
)
args.learning_rate = 1.0
else:
raise ValueError(f"Unknown --optimizer \"{args.optimizer}\"")
trainer = partial(
train,
accelerator=accelerator,
unet=unet,
text_encoder=text_encoder,
vae=vae,
noise_scheduler=noise_scheduler,
dtype=weight_dtype,
guidance_scale=args.guidance_scale,
prior_loss_weight=args.prior_loss_weight if args.num_class_images != 0 else 0,
no_val=args.valid_set_size == 0,
)
checkpoint_output_dir = output_dir / "model"
sample_output_dir = output_dir / "samples"
datamodule = VlpnDataModule(
data_file=args.train_data_file,
batch_size=args.train_batch_size,
tokenizer=tokenizer,
class_subdir=args.class_image_dir,
with_guidance=args.guidance_scale != 0,
num_class_images=args.num_class_images,
size=args.resolution,
num_buckets=args.num_buckets,
progressive_buckets=args.progressive_buckets,
bucket_step_size=args.bucket_step_size,
bucket_max_pixels=args.bucket_max_pixels,
dropout=args.tag_dropout,
shuffle=not args.no_tag_shuffle,
template_key=args.train_data_template,
valid_set_size=args.valid_set_size,
train_set_pad=args.train_set_pad,
valid_set_pad=args.valid_set_pad,
seed=args.seed,
filter=partial(keyword_filter, None, args.collection, args.exclude_collections),
dtype=weight_dtype
)
datamodule.setup()
num_train_epochs = args.num_train_epochs
sample_frequency = args.sample_frequency
if num_train_epochs is None:
num_train_epochs = math.ceil(
args.num_train_steps / len(datamodule.train_dataset)
) * args.gradient_accumulation_steps
sample_frequency = math.ceil(num_train_epochs * (sample_frequency / args.num_train_steps))
params_to_optimize = (unet.parameters(), )
if args.train_text_encoder_epochs != 0:
params_to_optimize += (
text_encoder.text_model.encoder.parameters(),
text_encoder.text_model.final_layer_norm.parameters(),
)
optimizer = create_optimizer(
itertools.chain(*params_to_optimize),
lr=args.learning_rate,
)
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_training_steps_per_epoch=len(datamodule.train_dataloader),
gradient_accumulation_steps=args.gradient_accumulation_steps,
min_lr=args.lr_min_lr,
warmup_func=args.lr_warmup_func,
annealing_func=args.lr_annealing_func,
warmup_exp=args.lr_warmup_exp,
annealing_exp=args.lr_annealing_exp,
cycles=args.lr_cycles,
end_lr=1e2,
train_epochs=num_train_epochs,
warmup_epochs=args.lr_warmup_epochs,
mid_point=args.lr_mid_point,
)
trainer(
strategy=dreambooth_strategy,
project="dreambooth",
train_dataloader=datamodule.train_dataloader,
val_dataloader=datamodule.val_dataloader,
seed=args.seed,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
num_train_epochs=num_train_epochs,
gradient_accumulation_steps=args.gradient_accumulation_steps,
sample_frequency=sample_frequency,
offset_noise_strength=args.offset_noise_strength,
# --
tokenizer=tokenizer,
sample_scheduler=sample_scheduler,
sample_output_dir=sample_output_dir,
checkpoint_output_dir=checkpoint_output_dir,
train_text_encoder_epochs=args.train_text_encoder_epochs,
max_grad_norm=args.max_grad_norm,
use_ema=args.use_ema,
ema_inv_gamma=args.ema_inv_gamma,
ema_power=args.ema_power,
ema_max_decay=args.ema_max_decay,
sample_batch_size=args.sample_batch_size,
sample_num_batches=args.sample_batches,
sample_num_steps=args.sample_steps,
sample_image_size=args.sample_image_size,
)
if __name__ == "__main__":
main()
|