summaryrefslogtreecommitdiffstats
path: root/train_ti.py
blob: 2a599c174400a60c1e4b9646d7f6e2dc0aae942e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
import argparse
import datetime
import logging
from functools import partial
from pathlib import Path
from typing import Union
import math
import warnings

import torch
import torch.utils.checkpoint
import hidet

from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import LoggerType, set_seed
from diffusers.models.attention_processor import AttnProcessor
from timm.models import create_model
import transformers

import numpy as np
from slugify import slugify

from data.csv import VlpnDataModule, keyword_filter
from models.clip.embeddings import patch_managed_embeddings
from training.functional import train, add_placeholder_tokens, get_models
from training.strategy.ti import textual_inversion_strategy
from training.optimization import get_scheduler
from training.sampler import create_named_schedule_sampler
from training.util import AverageMeter, save_args
from util.files import load_config, load_embeddings_from_dir

logger = get_logger(__name__)

warnings.filterwarnings("ignore")


torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True

# torch._dynamo.config.log_level = logging.WARNING

hidet.torch.dynamo_config.use_tensor_core(True)
hidet.torch.dynamo_config.use_attention(True)
hidet.torch.dynamo_config.search_space(0)


def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--train_data_file",
        type=str,
        default=None,
        help="A CSV file containing the training data.",
    )
    parser.add_argument(
        "--train_data_template",
        type=str,
        nargs="*",
        default="template",
    )
    parser.add_argument(
        "--project",
        type=str,
        default=None,
        help="The name of the current project.",
    )
    parser.add_argument(
        "--auto_cycles", type=str, default="o", help="Cycles to run automatically."
    )
    parser.add_argument(
        "--cycle_decay", type=float, default=1.0, help="Learning rate decay per cycle."
    )
    parser.add_argument(
        "--placeholder_tokens",
        type=str,
        nargs="*",
        help="A token to use as a placeholder for the concept.",
    )
    parser.add_argument(
        "--initializer_tokens",
        type=str,
        nargs="*",
        help="A token to use as initializer word.",
    )
    parser.add_argument(
        "--filter_tokens", type=str, nargs="*", help="Tokens to filter the dataset by."
    )
    parser.add_argument(
        "--initializer_noise",
        type=float,
        default=0,
        help="Noise to apply to the initializer word",
    )
    parser.add_argument(
        "--alias_tokens",
        type=str,
        nargs="*",
        default=[],
        help="Tokens to create an alias for.",
    )
    parser.add_argument(
        "--num_vectors", type=int, nargs="*", help="Number of vectors per embedding."
    )
    parser.add_argument(
        "--sequential",
        action="store_true",
    )
    parser.add_argument(
        "--num_class_images",
        type=int,
        default=0,
        help="How many class images to generate.",
    )
    parser.add_argument(
        "--class_image_dir",
        type=str,
        default="cls",
        help="The directory where class images will be saved.",
    )
    parser.add_argument(
        "--exclude_collections",
        type=str,
        nargs="*",
        help="Exclude all items with a listed collection.",
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output/text-inversion",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument(
        "--embeddings_dir",
        type=str,
        default=None,
        help="The embeddings directory where Textual Inversion embeddings are stored.",
    )
    parser.add_argument(
        "--train_dir_embeddings",
        action="store_true",
        help="Train embeddings loaded from embeddings directory.",
    )
    parser.add_argument(
        "--collection",
        type=str,
        nargs="*",
        help="A collection to filter the dataset.",
    )
    parser.add_argument(
        "--seed", type=int, default=None, help="A seed for reproducible training."
    )
    parser.add_argument(
        "--resolution",
        type=int,
        default=768,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--num_buckets",
        type=int,
        default=0,
        help="Number of aspect ratio buckets in either direction.",
    )
    parser.add_argument(
        "--progressive_buckets",
        action="store_true",
        help="Include images in smaller buckets as well.",
    )
    parser.add_argument(
        "--bucket_step_size",
        type=int,
        default=64,
        help="Step size between buckets.",
    )
    parser.add_argument(
        "--bucket_max_pixels",
        type=int,
        default=None,
        help="Maximum pixels per bucket.",
    )
    parser.add_argument(
        "--tag_dropout",
        type=float,
        default=0,
        help="Tag dropout probability.",
    )
    parser.add_argument(
        "--no_tag_shuffle",
        action="store_true",
        help="Shuffle tags.",
    )
    parser.add_argument(
        "--vector_dropout",
        type=int,
        default=0,
        help="Vector dropout probability.",
    )
    parser.add_argument(
        "--vector_shuffle",
        type=str,
        default="auto",
        choices=["all", "trailing", "leading", "between", "auto", "off"],
        help="Vector shuffling algorithm.",
    )
    parser.add_argument(
        "--input_pertubation",
        type=float,
        default=0,
        help="The scale of input pretubation. Recommended 0.1.",
    )
    parser.add_argument("--num_train_epochs", type=int, default=None)
    parser.add_argument("--num_train_steps", type=int, default=2000)
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--find_lr",
        action="store_true",
        help="Automatically find a learning rate (no training).",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="one_cycle",
        choices=[
            "linear",
            "cosine",
            "cosine_with_restarts",
            "polynomial",
            "constant",
            "constant_with_warmup",
            "one_cycle",
        ],
        help="The scheduler type to use.",
    )
    parser.add_argument(
        "--lr_warmup_epochs",
        type=int,
        default=10,
        help="Number of steps for the warmup in the lr scheduler.",
    )
    parser.add_argument(
        "--lr_mid_point", type=float, default=0.3, help="OneCycle schedule mid point."
    )
    parser.add_argument(
        "--lr_cycles",
        type=int,
        default=None,
        help="Number of restart cycles in the lr scheduler.",
    )
    parser.add_argument(
        "--lr_warmup_func",
        type=str,
        default="cos",
        choices=["linear", "cos"],
    )
    parser.add_argument(
        "--lr_warmup_exp",
        type=int,
        default=1,
        help='If lr_warmup_func is "cos", exponent to modify the function',
    )
    parser.add_argument(
        "--lr_annealing_func",
        type=str,
        default="cos",
        choices=["linear", "half_cos", "cos"],
    )
    parser.add_argument(
        "--lr_annealing_exp",
        type=int,
        default=1,
        help='If lr_annealing_func is "half_cos" or "cos", exponent to modify the function',
    )
    parser.add_argument(
        "--lr_min_lr",
        type=float,
        default=0.04,
        help="Minimum learning rate in the lr scheduler.",
    )
    parser.add_argument(
        "--use_ema", action="store_true", help="Whether to use EMA model."
    )
    parser.add_argument("--ema_inv_gamma", type=float, default=1.0)
    parser.add_argument("--ema_power", type=float, default=4 / 5)
    parser.add_argument("--ema_max_decay", type=float, default=0.9999)
    parser.add_argument("--min_snr_gamma", type=int, default=5, help="MinSNR gamma.")
    parser.add_argument(
        "--schedule_sampler",
        type=str,
        default="uniform",
        choices=["uniform", "loss-second-moment"],
        help="Noise schedule sampler.",
    )
    parser.add_argument(
        "--optimizer",
        type=str,
        default="adan",
        choices=[
            "adam",
            "adam8bit",
            "adan",
            "lion",
            "dadam",
            "dadan",
            "adafactor",
            "prodigy",
        ],
        help="Optimizer to use",
    )
    parser.add_argument(
        "--dadaptation_d0",
        type=float,
        default=1e-6,
        help="The d0 parameter for Dadaptation optimizers.",
    )
    parser.add_argument(
        "--adam_beta1",
        type=float,
        default=None,
        help="The beta1 parameter for the Adam optimizer.",
    )
    parser.add_argument(
        "--adam_beta2",
        type=float,
        default=None,
        help="The beta2 parameter for the Adam optimizer.",
    )
    parser.add_argument(
        "--adam_weight_decay", type=float, default=2e-2, help="Weight decay to use."
    )
    parser.add_argument(
        "--adam_epsilon",
        type=float,
        default=1e-08,
        help="Epsilon value for the Adam optimizer",
    )
    parser.add_argument(
        "--adam_amsgrad",
        type=bool,
        default=False,
        help="Amsgrad value for the Adam optimizer",
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose"
            "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
            "and an Nvidia Ampere GPU."
        ),
    )
    parser.add_argument(
        "--compile_unet",
        action="store_true",
        help="Compile UNet with Torch Dynamo.",
    )
    parser.add_argument(
        "--use_xformers",
        action="store_true",
        help="Use xformers.",
    )
    parser.add_argument(
        "--checkpoint_frequency",
        type=int,
        default=999999,
        help="How often to save a checkpoint and sample image (in epochs)",
    )
    parser.add_argument(
        "--no_milestone_checkpoints",
        action="store_true",
        help="If checkpoints are saved on maximum accuracy",
    )
    parser.add_argument(
        "--sample_num",
        type=int,
        default=None,
        help="How often to save a checkpoint and sample image (in number of samples)",
    )
    parser.add_argument(
        "--sample_frequency",
        type=int,
        default=1,
        help="How often to save a checkpoint and sample image (in epochs)",
    )
    parser.add_argument(
        "--sample_image_size",
        type=int,
        default=768,
        help="Size of sample images",
    )
    parser.add_argument(
        "--sample_batches",
        type=int,
        default=1,
        help="Number of sample batches to generate per checkpoint",
    )
    parser.add_argument(
        "--sample_batch_size",
        type=int,
        default=1,
        help="Number of samples to generate per batch",
    )
    parser.add_argument(
        "--valid_set_size",
        type=int,
        default=None,
        help="Number of images in the validation dataset.",
    )
    parser.add_argument(
        "--train_set_pad",
        type=int,
        default=None,
        help="The number to fill train dataset items up to.",
    )
    parser.add_argument(
        "--valid_set_pad",
        type=int,
        default=None,
        help="The number to fill validation dataset items up to.",
    )
    parser.add_argument(
        "--train_batch_size",
        type=int,
        default=1,
        help="Batch size (per device) for the training dataloader.",
    )
    parser.add_argument(
        "--sample_steps",
        type=int,
        default=15,
        help="Number of steps for sample generation. Higher values will result in more detailed samples, but longer runtimes.",
    )
    parser.add_argument(
        "--prior_loss_weight",
        type=float,
        default=1.0,
        help="The weight of prior preservation loss.",
    )
    parser.add_argument("--emb_alpha", type=float, default=1.0, help="Embedding alpha")
    parser.add_argument(
        "--emb_dropout",
        type=float,
        default=0,
        help="Embedding dropout probability.",
    )
    parser.add_argument(
        "--use_emb_decay", action="store_true", help="Whether to use embedding decay."
    )
    parser.add_argument(
        "--emb_decay_target", default=0.4, type=float, help="Embedding decay target."
    )
    parser.add_argument(
        "--emb_decay", default=1e2, type=float, help="Embedding decay factor."
    )
    parser.add_argument(
        "--noise_timesteps",
        type=int,
        default=1000,
    )
    parser.add_argument(
        "--resume_from",
        type=str,
        default=None,
        help="Path to a directory to resume training from (ie, logs/token_name/2022-09-22T23-36-27)",
    )
    parser.add_argument(
        "--global_step",
        type=int,
        default=0,
    )
    parser.add_argument(
        "--config",
        type=str,
        default=None,
        help="Path to a JSON configuration file containing arguments for invoking this script.",
    )

    args = parser.parse_args()
    if args.config is not None:
        args = load_config(args.config)
        args = parser.parse_args(namespace=argparse.Namespace(**args))

    if args.train_data_file is None:
        raise ValueError("You must specify --train_data_file")

    if args.pretrained_model_name_or_path is None:
        raise ValueError("You must specify --pretrained_model_name_or_path")

    if args.project is None:
        raise ValueError("You must specify --project")

    if isinstance(args.placeholder_tokens, str):
        args.placeholder_tokens = [args.placeholder_tokens]

    if isinstance(args.initializer_tokens, str):
        args.initializer_tokens = [args.initializer_tokens] * len(
            args.placeholder_tokens
        )

    if len(args.placeholder_tokens) == 0:
        args.placeholder_tokens = [
            f"<*{i}>" for i in range(len(args.initializer_tokens))
        ]

    if len(args.initializer_tokens) == 0:
        args.initializer_tokens = args.placeholder_tokens.copy()

    if len(args.placeholder_tokens) != len(args.initializer_tokens):
        raise ValueError(
            "--placeholder_tokens and --initializer_tokens must have the same number of items"
        )

    if isinstance(args.num_vectors, int):
        args.num_vectors = [args.num_vectors] * len(args.placeholder_tokens)

    if isinstance(args.num_vectors, list) and len(args.placeholder_tokens) != len(
        args.num_vectors
    ):
        raise ValueError(
            "--placeholder_tokens and --num_vectors must have the same number of items"
        )

    if args.alias_tokens is None:
        args.alias_tokens = []

    if not isinstance(args.alias_tokens, list) or len(args.alias_tokens) % 2 != 0:
        raise ValueError("--alias_tokens must be a list with an even number of items")

    if args.filter_tokens is None:
        args.filter_tokens = args.placeholder_tokens.copy()

    if isinstance(args.filter_tokens, str):
        args.filter_tokens = [args.filter_tokens]

    if args.sequential:
        args.alias_tokens += [
            item
            for pair in zip(args.placeholder_tokens, args.initializer_tokens)
            for item in pair
        ]

        if isinstance(args.train_data_template, str):
            args.train_data_template = [args.train_data_template] * len(
                args.placeholder_tokens
            )

        if len(args.placeholder_tokens) != len(args.train_data_template):
            raise ValueError(
                "--placeholder_tokens and --train_data_template must have the same number of items"
            )

        if args.num_vectors is None:
            args.num_vectors = [None] * len(args.placeholder_tokens)
    else:
        if isinstance(args.train_data_template, list):
            raise ValueError(
                "--train_data_template can't be a list in simultaneous mode"
            )

    if isinstance(args.collection, str):
        args.collection = [args.collection]

    if isinstance(args.exclude_collections, str):
        args.exclude_collections = [args.exclude_collections]

    if args.output_dir is None:
        raise ValueError("You must specify --output_dir")

    if args.adam_beta1 is None:
        if args.optimizer == "lion":
            args.adam_beta1 = 0.95
        else:
            args.adam_beta1 = 0.9

    if args.adam_beta2 is None:
        if args.optimizer == "lion":
            args.adam_beta2 = 0.98
        else:
            args.adam_beta2 = 0.999

    return args


def main():
    args = parse_args()

    global_step_offset = args.global_step
    now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
    output_dir = Path(args.output_dir) / slugify(args.project) / now
    output_dir.mkdir(parents=True, exist_ok=True)

    accelerator = Accelerator(
        log_with=LoggerType.TENSORBOARD,
        project_dir=f"{output_dir}",
        mixed_precision=args.mixed_precision,
    )

    weight_dtype = torch.float32
    if args.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif args.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    logging.basicConfig(filename=output_dir / "log.txt", level=logging.DEBUG)

    if args.seed is None:
        args.seed = torch.random.seed() >> 32

    set_seed(args.seed)

    save_args(output_dir, args)

    tokenizer, text_encoder, vae, unet, noise_scheduler, sample_scheduler = get_models(
        args.pretrained_model_name_or_path
    )
    embeddings = patch_managed_embeddings(
        text_encoder, args.emb_alpha, args.emb_dropout
    )
    schedule_sampler = create_named_schedule_sampler(
        args.schedule_sampler, noise_scheduler.config.num_train_timesteps
    )

    tokenizer.set_use_vector_shuffle(args.vector_shuffle)
    tokenizer.set_dropout(args.vector_dropout)

    vae.enable_slicing()

    if args.use_xformers:
        vae.set_use_memory_efficient_attention_xformers(True)
        unet.enable_xformers_memory_efficient_attention()
    elif args.compile_unet:
        unet.mid_block.attentions[0].transformer_blocks[0].attn1._use_2_0_attn = False

        proc = AttnProcessor()

        def fn_recursive_set_proc(module: torch.nn.Module):
            if hasattr(module, "processor"):
                module.processor = proc

            for child in module.children():
                fn_recursive_set_proc(child)

        fn_recursive_set_proc(unet)

    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()
        text_encoder.gradient_checkpointing_enable()

    if len(args.alias_tokens) != 0:
        alias_placeholder_tokens = args.alias_tokens[::2]
        alias_initializer_tokens = args.alias_tokens[1::2]

        added_tokens, added_ids = add_placeholder_tokens(
            tokenizer=tokenizer,
            embeddings=embeddings,
            placeholder_tokens=alias_placeholder_tokens,
            initializer_tokens=alias_initializer_tokens,
        )
        embeddings.persist(True)
        print(
            f"Added {len(added_tokens)} aliases: {list(zip(alias_placeholder_tokens, added_tokens, alias_initializer_tokens, added_ids))}"
        )

    if args.embeddings_dir is not None:
        embeddings_dir = Path(args.embeddings_dir)
        if not embeddings_dir.exists() or not embeddings_dir.is_dir():
            raise ValueError("--embeddings_dir must point to an existing directory")

        added_tokens, added_ids = load_embeddings_from_dir(
            tokenizer, embeddings, embeddings_dir
        )
        print(
            f"Added {len(added_tokens)} tokens from embeddings dir: {list(zip(added_tokens, added_ids))}"
        )

        if args.train_dir_embeddings:
            args.placeholder_tokens = added_tokens
            print("Training embeddings from embeddings dir")
        else:
            embeddings.persist(True)

    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate
            * args.gradient_accumulation_steps
            * args.train_batch_size
            * accelerator.num_processes
        )

    if args.find_lr:
        args.learning_rate = 1e-5
        args.lr_scheduler = "exponential_growth"

    if args.optimizer == "adam8bit":
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
            )

        create_optimizer = partial(
            bnb.optim.AdamW8bit,
            betas=(args.adam_beta1, args.adam_beta2),
            weight_decay=args.adam_weight_decay,
            eps=args.adam_epsilon,
            amsgrad=args.adam_amsgrad,
        )
    elif args.optimizer == "adam":
        create_optimizer = partial(
            torch.optim.AdamW,
            betas=(args.adam_beta1, args.adam_beta2),
            weight_decay=args.adam_weight_decay,
            eps=args.adam_epsilon,
            amsgrad=args.adam_amsgrad,
        )
    elif args.optimizer == "adan":
        try:
            import timm.optim
        except ImportError:
            raise ImportError(
                "To use Adan, please install the PyTorch Image Models library: `pip install timm`."
            )

        create_optimizer = partial(
            timm.optim.Adan,
            weight_decay=args.adam_weight_decay,
            eps=args.adam_epsilon,
            no_prox=True,
        )
    elif args.optimizer == "lion":
        try:
            import lion_pytorch
        except ImportError:
            raise ImportError(
                "To use Lion, please install the lion_pytorch library: `pip install lion-pytorch`."
            )

        create_optimizer = partial(
            lion_pytorch.Lion,
            betas=(args.adam_beta1, args.adam_beta2),
            weight_decay=args.adam_weight_decay,
            use_triton=True,
        )
    elif args.optimizer == "adafactor":
        create_optimizer = partial(
            transformers.optimization.Adafactor,
            weight_decay=args.adam_weight_decay,
            scale_parameter=True,
            relative_step=True,
            warmup_init=True,
        )

        args.lr_scheduler = "adafactor"
        args.lr_min_lr = args.learning_rate
        args.learning_rate = None
    elif args.optimizer == "dadam":
        try:
            import dadaptation
        except ImportError:
            raise ImportError(
                "To use DAdaptAdam, please install the dadaptation library: `pip install dadaptation`."
            )

        create_optimizer = partial(
            dadaptation.DAdaptAdam,
            betas=(args.adam_beta1, args.adam_beta2),
            weight_decay=args.adam_weight_decay,
            eps=args.adam_epsilon,
            decouple=True,
            d0=args.dadaptation_d0,
        )
    elif args.optimizer == "dadan":
        try:
            import dadaptation
        except ImportError:
            raise ImportError(
                "To use DAdaptAdan, please install the dadaptation library: `pip install dadaptation`."
            )

        create_optimizer = partial(
            dadaptation.DAdaptAdan,
            weight_decay=args.adam_weight_decay,
            eps=args.adam_epsilon,
            d0=args.dadaptation_d0,
        )
    elif args.optimizer == "prodigy":
        try:
            import prodigyopt
        except ImportError:
            raise ImportError(
                "To use DAdaptAdan, please install the dadaptation library: `pip install dadaptation`."
            )

        create_optimizer = partial(
            prodigyopt.Prodigy,
            betas=(args.adam_beta1, args.adam_beta2),
            weight_decay=args.adam_weight_decay,
            eps=args.adam_epsilon,
            d0=args.dadaptation_d0,
        )

        args.learning_rate = 1.0
    else:
        raise ValueError(f'Unknown --optimizer "{args.optimizer}"')

    trainer = partial(
        train,
        accelerator=accelerator,
        unet=unet,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        vae=vae,
        noise_scheduler=noise_scheduler,
        schedule_sampler=schedule_sampler,
        min_snr_gamma=args.min_snr_gamma,
        dtype=weight_dtype,
        seed=args.seed,
        compile_unet=args.compile_unet,
        prior_loss_weight=args.prior_loss_weight if args.num_class_images != 0 else 0,
        no_val=args.valid_set_size == 0,
        strategy=textual_inversion_strategy,
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        checkpoint_frequency=args.checkpoint_frequency,
        milestone_checkpoints=not args.no_milestone_checkpoints,
        global_step_offset=global_step_offset,
        input_pertubation=args.input_pertubation,
        # --
        use_emb_decay=args.use_emb_decay,
        emb_decay_target=args.emb_decay_target,
        emb_decay=args.emb_decay,
        use_ema=args.use_ema,
        ema_inv_gamma=args.ema_inv_gamma,
        ema_power=args.ema_power,
        ema_max_decay=args.ema_max_decay,
        sample_scheduler=sample_scheduler,
        sample_batch_size=args.sample_batch_size,
        sample_num_batches=args.sample_batches,
        sample_num_steps=args.sample_steps,
        sample_image_size=args.sample_image_size,
    )

    data_generator = torch.Generator(device="cpu").manual_seed(args.seed)
    data_npgenerator = np.random.default_rng(args.seed)

    def run(
        i: int,
        placeholder_tokens: list[str],
        initializer_tokens: list[str],
        num_vectors: Union[int, list[int]],
        data_template: str,
    ):
        placeholder_token_ids, initializer_token_ids = add_placeholder_tokens(
            tokenizer=tokenizer,
            embeddings=embeddings,
            placeholder_tokens=placeholder_tokens,
            initializer_tokens=initializer_tokens,
            num_vectors=num_vectors,
            initializer_noise=args.initializer_noise,
        )

        stats = list(
            zip(
                placeholder_tokens,
                placeholder_token_ids,
                initializer_tokens,
                initializer_token_ids,
            )
        )

        print("")
        print(f"============ TI batch {i + 1} ============")
        print("")
        print(stats)

        filter_tokens = [
            token for token in args.filter_tokens if token in placeholder_tokens
        ]

        datamodule = VlpnDataModule(
            data_file=args.train_data_file,
            batch_size=args.train_batch_size,
            tokenizer=tokenizer,
            class_subdir=args.class_image_dir,
            num_class_images=args.num_class_images,
            size=args.resolution,
            num_buckets=args.num_buckets,
            progressive_buckets=args.progressive_buckets,
            bucket_step_size=args.bucket_step_size,
            bucket_max_pixels=args.bucket_max_pixels,
            tag_dropout=args.tag_dropout,
            shuffle=not args.no_tag_shuffle,
            template_key=data_template,
            placeholder_tokens=args.placeholder_tokens,
            valid_set_size=args.valid_set_size,
            train_set_pad=args.train_set_pad,
            valid_set_pad=args.valid_set_pad,
            filter=partial(
                keyword_filter, filter_tokens, args.collection, args.exclude_collections
            ),
            dtype=weight_dtype,
            generator=data_generator,
            npgenerator=data_npgenerator,
        )
        datamodule.setup()

        num_train_epochs = args.num_train_epochs
        sample_frequency = args.sample_frequency
        if num_train_epochs is None:
            num_train_epochs = (
                math.ceil(args.num_train_steps / len(datamodule.train_dataset))
                * args.gradient_accumulation_steps
            )
            sample_frequency = math.ceil(
                num_train_epochs * (sample_frequency / args.num_train_steps)
            )
        num_training_steps_per_epoch = math.ceil(
            len(datamodule.train_dataset) / args.gradient_accumulation_steps
        )
        num_train_steps = num_training_steps_per_epoch * num_train_epochs
        if args.sample_num is not None:
            sample_frequency = math.ceil(num_train_epochs / args.sample_num)

        project = placeholder_tokens[0] if len(placeholder_tokens) == 1 else "ti"

        if accelerator.is_main_process:
            accelerator.init_trackers(project)

        sample_output_dir = output_dir / project / "samples"

        training_iter = 0
        auto_cycles = list(args.auto_cycles)
        learning_rate = args.learning_rate
        lr_scheduler = args.lr_scheduler
        lr_warmup_epochs = args.lr_warmup_epochs
        lr_cycles = args.lr_cycles

        avg_loss = AverageMeter()
        avg_acc = AverageMeter()
        avg_loss_val = AverageMeter()
        avg_acc_val = AverageMeter()

        optimizer = create_optimizer(
            (
                param
                for param in text_encoder.text_model.embeddings.token_embedding.parameters()
                if param.requires_grad
            ),
            lr=args.learning_rate,
        )

        while True:
            if len(auto_cycles) != 0:
                response = auto_cycles.pop(0)
            else:
                response = input(
                    "\n### Choose action: [o] one_cycle, [w] warmup, [c] constant, [d] decay, [s] stop \n--> "
                )

            if response.lower().strip() == "o":
                if args.learning_rate is not None:
                    learning_rate = (
                        args.learning_rate * 2 * (args.cycle_decay**training_iter)
                    )
            else:
                learning_rate = args.learning_rate * (args.cycle_decay**training_iter)

            if response.lower().strip() == "o":
                lr_scheduler = "one_cycle"
                lr_warmup_epochs = args.lr_warmup_epochs
                lr_cycles = args.lr_cycles
            elif response.lower().strip() == "w":
                lr_scheduler = "constant_with_warmup"
                lr_warmup_epochs = num_train_epochs
            elif response.lower().strip() == "c":
                lr_scheduler = "constant"
            elif response.lower().strip() == "d":
                lr_scheduler = "cosine"
                lr_warmup_epochs = 0
                lr_cycles = 1
            elif response.lower().strip() == "s":
                break
            else:
                continue

            print("")
            print(f"------------ TI cycle {training_iter + 1}: {response} ------------")
            print("")

            for group, lr in zip(optimizer.param_groups, [learning_rate]):
                group["lr"] = lr

            lr_scheduler = get_scheduler(
                lr_scheduler,
                optimizer=optimizer,
                num_training_steps_per_epoch=len(datamodule.train_dataloader),
                gradient_accumulation_steps=args.gradient_accumulation_steps,
                min_lr=args.lr_min_lr,
                warmup_func=args.lr_warmup_func,
                annealing_func=args.lr_annealing_func,
                warmup_exp=args.lr_warmup_exp,
                annealing_exp=args.lr_annealing_exp,
                cycles=lr_cycles,
                end_lr=1e3,
                train_epochs=num_train_epochs,
                warmup_epochs=lr_warmup_epochs,
                mid_point=args.lr_mid_point,
            )

            checkpoint_output_dir = (
                output_dir / project / f"checkpoints_{training_iter}"
            )

            trainer(
                train_dataloader=datamodule.train_dataloader,
                val_dataloader=datamodule.val_dataloader,
                optimizer=optimizer,
                lr_scheduler=lr_scheduler,
                num_train_epochs=num_train_epochs,
                global_step_offset=training_iter * num_train_steps,
                cycle=training_iter,
                # --
                group_labels=["emb"],
                checkpoint_output_dir=checkpoint_output_dir,
                sample_output_dir=sample_output_dir,
                sample_frequency=sample_frequency,
                placeholder_tokens=placeholder_tokens,
                placeholder_token_ids=placeholder_token_ids,
                avg_loss=avg_loss,
                avg_acc=avg_acc,
                avg_loss_val=avg_loss_val,
                avg_acc_val=avg_acc_val,
            )

            training_iter += 1

        accelerator.end_training()

    if not args.sequential:
        run(
            0,
            args.placeholder_tokens,
            args.initializer_tokens,
            args.num_vectors,
            args.train_data_template,
        )
    else:
        for i, placeholder_token, initializer_token, num_vectors, data_template in zip(
            range(len(args.placeholder_tokens)),
            args.placeholder_tokens,
            args.initializer_tokens,
            args.num_vectors,
            args.train_data_template,
        ):
            run(i, [placeholder_token], [initializer_token], num_vectors, data_template)
            embeddings.persist(True)


if __name__ == "__main__":
    main()