summaryrefslogtreecommitdiffstats
path: root/training/common.py
blob: 80831373a6394c6f54c0af551c16603b3e9e951c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import math
from contextlib import _GeneratorContextManager, nullcontext
from typing import Callable, Any, Tuple, Union

import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader

from accelerate import Accelerator
from transformers import CLIPTextModel
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel, DPMSolverMultistepScheduler

from tqdm.auto import tqdm

from pipelines.stable_diffusion.vlpn_stable_diffusion import VlpnStableDiffusion
from models.clip.embeddings import ManagedCLIPTextEmbeddings, patch_managed_embeddings
from models.clip.util import get_extended_embeddings
from models.clip.tokenizer import MultiCLIPTokenizer
from training.util import AverageMeter, CheckpointerBase


def noop(*args, **kwards):
    pass


def noop_ctx(*args, **kwards):
    return nullcontext()


def noop_on_log():
    return {}


def generate_class_images(
    accelerator,
    text_encoder,
    vae,
    unet,
    tokenizer,
    scheduler,
    data_train,
    sample_batch_size,
    sample_image_size,
    sample_steps
):
    missing_data = [item for item in data_train if not item.class_image_path.exists()]

    if len(missing_data) == 0:
        return

    batched_data = [
        missing_data[i:i+sample_batch_size]
        for i in range(0, len(missing_data), sample_batch_size)
    ]

    pipeline = VlpnStableDiffusion(
        text_encoder=text_encoder,
        vae=vae,
        unet=unet,
        tokenizer=tokenizer,
        scheduler=scheduler,
    ).to(accelerator.device)
    pipeline.set_progress_bar_config(dynamic_ncols=True)

    with torch.inference_mode():
        for batch in batched_data:
            image_name = [item.class_image_path for item in batch]
            prompt = [item.cprompt for item in batch]
            nprompt = [item.nprompt for item in batch]

            images = pipeline(
                prompt=prompt,
                negative_prompt=nprompt,
                height=sample_image_size,
                width=sample_image_size,
                num_inference_steps=sample_steps
            ).images

            for i, image in enumerate(images):
                image.save(image_name[i])

    del pipeline

    if torch.cuda.is_available():
        torch.cuda.empty_cache()


def get_models(pretrained_model_name_or_path: str):
    tokenizer = MultiCLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder='tokenizer')
    text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path, subfolder='text_encoder')
    vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder='vae')
    unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder='unet')
    noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder='scheduler')
    sample_scheduler = DPMSolverMultistepScheduler.from_pretrained(
        pretrained_model_name_or_path, subfolder='scheduler')

    vae.enable_slicing()
    vae.set_use_memory_efficient_attention_xformers(True)
    unet.set_use_memory_efficient_attention_xformers(True)

    embeddings = patch_managed_embeddings(text_encoder)

    return tokenizer, text_encoder, vae, unet, noise_scheduler, sample_scheduler, embeddings


def add_placeholder_tokens(
    tokenizer: MultiCLIPTokenizer,
    embeddings: ManagedCLIPTextEmbeddings,
    placeholder_tokens: list[str],
    initializer_tokens: list[str],
    num_vectors: Union[list[int], int]
):
    initializer_token_ids = [
        tokenizer.encode(token, add_special_tokens=False)
        for token in initializer_tokens
    ]
    placeholder_token_ids = tokenizer.add_multi_tokens(placeholder_tokens, num_vectors)

    embeddings.resize(len(tokenizer))

    for (placeholder_token_id, initializer_token_id) in zip(placeholder_token_ids, initializer_token_ids):
        embeddings.add_embed(placeholder_token_id, initializer_token_id)

    return placeholder_token_ids, initializer_token_ids


def loss_step(
    vae: AutoencoderKL,
    noise_scheduler: DDPMScheduler,
    unet: UNet2DConditionModel,
    text_encoder: CLIPTextModel,
    prior_loss_weight: float,
    seed: int,
    step: int,
    batch: dict[str, Any],
    eval: bool = False
):
    # Convert images to latent space
    latents = vae.encode(batch["pixel_values"]).latent_dist.sample().detach()
    latents = latents * 0.18215

    generator = torch.Generator(device=latents.device).manual_seed(seed + step) if eval else None

    # Sample noise that we'll add to the latents
    noise = torch.randn(
        latents.shape,
        dtype=latents.dtype,
        layout=latents.layout,
        device=latents.device,
        generator=generator
    )
    bsz = latents.shape[0]
    # Sample a random timestep for each image
    timesteps = torch.randint(
        0,
        noise_scheduler.config.num_train_timesteps,
        (bsz,),
        generator=generator,
        device=latents.device,
    )
    timesteps = timesteps.long()

    # Add noise to the latents according to the noise magnitude at each timestep
    # (this is the forward diffusion process)
    noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
    noisy_latents = noisy_latents.to(dtype=unet.dtype)

    # Get the text embedding for conditioning
    encoder_hidden_states = get_extended_embeddings(
        text_encoder,
        batch["input_ids"],
        batch["attention_mask"]
    )
    encoder_hidden_states = encoder_hidden_states.to(dtype=unet.dtype)

    # Predict the noise residual
    model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample

    # Get the target for loss depending on the prediction type
    if noise_scheduler.config.prediction_type == "epsilon":
        target = noise
    elif noise_scheduler.config.prediction_type == "v_prediction":
        target = noise_scheduler.get_velocity(latents, noise, timesteps)
    else:
        raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")

    if batch["with_prior"].all():
        # Chunk the noise and model_pred into two parts and compute the loss on each part separately.
        model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
        target, target_prior = torch.chunk(target, 2, dim=0)

        # Compute instance loss
        loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")

        # Compute prior loss
        prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")

        # Add the prior loss to the instance loss.
        loss = loss + prior_loss_weight * prior_loss
    else:
        loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")

    acc = (model_pred == target).float().mean()

    return loss, acc, bsz


def train_loop(
    accelerator: Accelerator,
    optimizer: torch.optim.Optimizer,
    lr_scheduler: torch.optim.lr_scheduler._LRScheduler,
    model: torch.nn.Module,
    checkpointer: CheckpointerBase,
    train_dataloader: DataLoader,
    val_dataloader: DataLoader,
    loss_step: Union[Callable[[int, Any], Tuple[Any, Any, int]], Callable[[int, Any, bool], Tuple[Any, Any, int]]],
    sample_frequency: int = 10,
    checkpoint_frequency: int = 50,
    global_step_offset: int = 0,
    num_epochs: int = 100,
    on_log: Callable[[], dict[str, Any]] = noop_on_log,
    on_train: Callable[[int], _GeneratorContextManager] = noop_ctx,
    on_before_optimize: Callable[[int], None] = noop,
    on_after_optimize: Callable[[float], None] = noop,
    on_eval: Callable[[], _GeneratorContextManager] = noop_ctx
):
    num_training_steps_per_epoch = math.ceil(len(train_dataloader) / accelerator.gradient_accumulation_steps)
    num_val_steps_per_epoch = len(val_dataloader)

    num_training_steps = num_training_steps_per_epoch * num_epochs
    num_val_steps = num_val_steps_per_epoch * num_epochs

    global_step = 0

    avg_loss = AverageMeter()
    avg_acc = AverageMeter()

    avg_loss_val = AverageMeter()
    avg_acc_val = AverageMeter()

    max_acc_val = 0.0

    local_progress_bar = tqdm(
        range(num_training_steps_per_epoch + num_val_steps_per_epoch),
        disable=not accelerator.is_local_main_process,
        dynamic_ncols=True
    )
    local_progress_bar.set_description(f"Epoch 1 / {num_epochs}")

    global_progress_bar = tqdm(
        range(num_training_steps + num_val_steps),
        disable=not accelerator.is_local_main_process,
        dynamic_ncols=True
    )
    global_progress_bar.set_description("Total progress")

    try:
        for epoch in range(num_epochs):
            if accelerator.is_main_process:
                if epoch % sample_frequency == 0:
                    checkpointer.save_samples(global_step + global_step_offset)

                if epoch % checkpoint_frequency == 0 and epoch != 0:
                    checkpointer.checkpoint(global_step + global_step_offset, "training")

            local_progress_bar.set_description(f"Epoch {epoch + 1} / {num_epochs}")
            local_progress_bar.reset()

            model.train()

            with on_train(epoch):
                for step, batch in enumerate(train_dataloader):
                    with accelerator.accumulate(model):
                        loss, acc, bsz = loss_step(step, batch)

                        accelerator.backward(loss)

                        on_before_optimize(epoch)

                        optimizer.step()
                        lr_scheduler.step()
                        optimizer.zero_grad(set_to_none=True)

                        avg_loss.update(loss.detach_(), bsz)
                        avg_acc.update(acc.detach_(), bsz)

                    # Checks if the accelerator has performed an optimization step behind the scenes
                    if accelerator.sync_gradients:
                        on_after_optimize(lr_scheduler.get_last_lr()[0])

                        local_progress_bar.update(1)
                        global_progress_bar.update(1)

                        global_step += 1

                    logs = {
                        "train/loss": avg_loss.avg.item(),
                        "train/acc": avg_acc.avg.item(),
                        "train/cur_loss": loss.item(),
                        "train/cur_acc": acc.item(),
                        "lr": lr_scheduler.get_last_lr()[0],
                    }
                    logs.update(on_log())

                    accelerator.log(logs, step=global_step)

                    local_progress_bar.set_postfix(**logs)

                    if global_step >= num_training_steps:
                        break

            accelerator.wait_for_everyone()

            model.eval()

            cur_loss_val = AverageMeter()
            cur_acc_val = AverageMeter()

            with torch.inference_mode():
                with on_eval():
                    for step, batch in enumerate(val_dataloader):
                        loss, acc, bsz = loss_step(step, batch, True)

                        loss = loss.detach_()
                        acc = acc.detach_()

                        cur_loss_val.update(loss, bsz)
                        cur_acc_val.update(acc, bsz)

                        avg_loss_val.update(loss, bsz)
                        avg_acc_val.update(acc, bsz)

                        local_progress_bar.update(1)
                        global_progress_bar.update(1)

                        logs = {
                            "val/loss": avg_loss_val.avg.item(),
                            "val/acc": avg_acc_val.avg.item(),
                            "val/cur_loss": loss.item(),
                            "val/cur_acc": acc.item(),
                        }
                        local_progress_bar.set_postfix(**logs)

            logs["val/cur_loss"] = cur_loss_val.avg.item()
            logs["val/cur_acc"] = cur_acc_val.avg.item()

            accelerator.log(logs, step=global_step)

            local_progress_bar.clear()
            global_progress_bar.clear()

            if accelerator.is_main_process:
                if avg_acc_val.avg.item() > max_acc_val:
                    accelerator.print(
                        f"Global step {global_step}: Validation accuracy reached new maximum: {max_acc_val:.2e} -> {avg_acc_val.avg.item():.2e}")
                    checkpointer.checkpoint(global_step + global_step_offset, "milestone")
                    max_acc_val = avg_acc_val.avg.item()

        # Create the pipeline using using the trained modules and save it.
        if accelerator.is_main_process:
            print("Finished!")
            checkpointer.checkpoint(global_step + global_step_offset, "end")
            checkpointer.save_samples(global_step + global_step_offset)
            accelerator.end_training()

    except KeyboardInterrupt:
        if accelerator.is_main_process:
            print("Interrupted")
            checkpointer.checkpoint(global_step + global_step_offset, "end")
            accelerator.end_training()
        quit()